gcc -o tutorial03 tutorial03.c -lavutil -lavformat -lavcodec -lz -lm \
`sdl-config --cflags --libs`

AUDIO名词解释:
samples:采样,通过PCM来采样,通常样本16bit,PCM的采样精度从14-bit发展到16-bit、18-bit、20-bit直到24-bit
Samples rate:采样率,22.05KHz and 44.1KHz,每秒从连续信号中提取并组成离散信号的采样个数
位速:采样率*样本bit*通道数,CD上未经压缩的音频位速是1411.2 kbit/s(16 位/采样点 × 44100 采样点/秒 × 2 通道)

pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_AUDIO , 在for循环找找到audiostream的索引i
AVCodecContext *aCodecCtx=pFormatCtx->streams[audioStream]->codec; 得到音频编码的信息

SDL_AudioSpec  wanted_spec,spec;
wanted_spec.freq = aCodecCtx->sample_rate;   //采样率
wanted_spec.format = AUDIO_S16SYS;
//告诉SDL使用什么格式,S指代signed,16为样本16bit,SYS指代大小端由系统决定
wanted_spec.channels = aCodecCtx->channels; //有多少个通道
wanted_spec.silence = 0; //silence值,由于为signed,故为0
wanted_spec.samples =1024; //缓存大小
wanted_spec.callback = audio_callback; //音频的回调函数

wanted_spec.userdata = aCodecCtx; //给回调函数处理的数据
SDL_OpenAudio(&wanted_spec, &spec)
返回-1则打开失败,spec为NULL则以wanted_spec指定的方式播放,若spec不为NULL,则使用根据硬件改变的spec指定的方式播放,而wanted_spec可以删除

VCodec         *aCodec = avcodec_find_decoder(aCodecCtx->codec_id);
avcodec_open(aCodecCtx, aCodec);
找到解码器,并进行解码

typedef struct PacketQueue {
AVPacketList *first_pkt, *last_pkt;
int nb_packets;        //为包的总数
int size;    //为所有包的大小
SDL_mutex *mutex; //互斥锁
SDL_cond *cond; //条件变量
} PacketQueue;
我们自己创建的用于构建Packet队列的数据结构

AVPacketList
A simple linked list for packets.
AVPacket pkt
AVPacketList * next

void packet_queue_init(PacketQueue *q)
{

memset(q,0,sizeof(PacketQueue));
    q->mutex = SDL_CreateMutex();
    q->cond=SDL_CreateCond();
}

对PacketQueue数据结构进行初始化

用于给PacketQueue数据结构中填入包的函数
int    packet_queue_put(PacketQueue    *q,AVPacket    *pkt)
{
    AVPacketList    *pkt1;
    if(av_dup_packet(pkt)<0)
    {
        return    -1;    //检查是否为NULL,为NULL则自己填充,否则返回-1
    }
    pkt1    =    av_malloc(sizeof(AVPacketList));//给AVPacketList分配空间

if (!pkt1)
        return -1;
    pkt1->pkt = *pkt;
    pkt1->next = NULL;
    SDL_LockMutex(q->mutex); //对PacketQueue进行操作,先锁定互斥变量
    if (!q->last_pkt)
        q->first_pkt = pkt1;
    else
        q->last_pkt->next = pkt1;
    q->last_pkt = pkt1;
    q->nb_packets++;
    q->size += pkt1->pkt.size;
    SDL_CondSignal(q->cond); //发送条件信号,方便等待数据的地方唤醒
    SDL_UnlockMutex(q->mutex); //解锁
    return 0;
}

接收数据
static int packet_queue_get(PacketQueue *q, AVPacket *pkt, int block)
{
    AVPacketList    *pkt1;
    int    ret;
    SDL_LockMutex(q->mutex);//锁定mutex
    for(;;)
    {
        if(quit)
        {
            ret    =-1;
            break;
        }
        pkt1=q->first_pkt;
        if (pkt1) {
            q->first_pkt = pkt1->next;
            if (!q->first_pkt)
                q->last_pkt = NULL;
            q->nb_packets--;
            q->size -= pkt1->pkt.size;
            *pkt = pkt1->pkt;
            av_free(pkt1);
            ret = 1;
            break;
        }
        else if (!block) {
            ret = 0;
            break;
        }
        else {
            SDL_CondWait(q->cond, q->mutex);
        }
    }
    SDL_UnlockMutex(q->mutex);
    return ret;
}
SDL_CondWait先检测是否满足条件,若不满足,解锁mutex,wait,直至被SDL_CondSignal()函数或者SDL_CondBroadcast()函数通知,则锁定mutex并返回

void SDL_PauseAudio(int pause_on)
控制播放与暂停,当pause_on为0时,播放数据,若数据未准备,则播放静音

播放的回调函数,格式必须为void callback(void *userdata, Uint8 *stream, int len),这里的userdata就是我们给到SDL的指针,stream是我们要把声音数据写入的缓冲区指针,len是缓冲区的大小。
void audio_callback(void *userdata, Uint8 *stream, int len) {

struct    mydata    *data=(struct    mydata*)userdata;
AVCodecContext *aCodecCtx = (AVCodecContext *)data->pFormatCtx;
PacketQueue *audioq=data->audioq;
int len1, audio_size;
//静态的数据为了可以多次调用回调函数,而每次不一定处理完了数据
static uint8_t audio_buf[(AVCODEC_MAX_AUDIO_FRAME_SIZE * 3) / 2];
//audio_buf的大小为1.5倍的声音帧的大小以便于有一个比较好的缓冲
static unsigned int audio_buf_size = 0;
static unsigned int audio_buf_index = 0;

while(len > 0) {
    if(audio_buf_index >= audio_buf_size) {
     
      audio_size = audio_decode_frame(aCodecCtx, audio_buf,
                                      sizeof(audio_buf));
      if(audio_size < 0) {
   
    audio_buf_size = 1024;
    memset(audio_buf, 0, audio_buf_size);
      } else {
    audio_buf_size = audio_size;
      }
      audio_buf_index = 0;
    }
    len1 = audio_buf_size - audio_buf_index;
    if(len1 > len)
      len1 = len;
    memcpy(stream, (uint8_t *)audio_buf + audio_buf_index, len1);
    len -= len1;
    stream += len1;
    audio_buf_index += len1;
}
}

对音频数据进行解码,被解码的数据存在audio_buf中,buf_size告诉函数audio_buf缓冲区多大,返回值为解码的数据数量,结束时返回-1,否则返回被解码的bytes数。
int audio_decode_frame(AVCodecContext *aCodecCtx, uint8_t *audio_buf,
                       int buf_size,PacketQueue *audioq) {

static AVPacket pkt;
static uint8_t *audio_pkt_data = NULL;
static int audio_pkt_size = 0;
int len1, data_size;
for(;;) {
    while(audio_pkt_size > 0) {    //该循环从末尾开始
      data_size = buf_size;    //avcodec_decode_audio2必须先指定输出缓冲大小
      len1 = avcodec_decode_audio2(aCodecCtx, (int16_t *)audio_buf, &data_size, audio_pkt_data, audio_pkt_size);

//对数据进行解码
      if(len1 < 0) {
   
    audio_pkt_size = 0;
    break;
      }
      audio_pkt_data += len1;
      audio_pkt_size -= len1; //静态数据,可能包里面有多个帧,故下次调用继续
      if(data_size <= 0) {
   
    continue;
      }
     
      return data_size;
    }
    if(pkt.data)
      av_free_packet(&pkt);
    if(quit) {
      return -1;
    }
    if(packet_queue_get(&audioq, &pkt, 1) < 0) {
      return -1;
    }
    audio_pkt_data = pkt.data;
    audio_pkt_size = pkt.size;
}
}

int avcodec_decode_audio2(AVCodecContext *avctx, int16_t *samples, int *frame_size_ptr, uint8_t *buf, int buf_size)
输出为samples,如果没有可以解码的frame_size_ptr返回0,否则其为被解码的大小。你必须分配frame_size_ptr为samples的缓存大小在你调用该函数时。
返回负数为错误,返回解码的字节数或0指示没有被解码的。
The input buffer must be FF_INPUT_BUFFER_PADDING_SIZE larger than the actual read bytes because some optimized bitstream readers read 32 or 64 bits at once and could read over the end. The end of the input buffer buf should be set to 0 to ensure that no overreading happens for damaged MPEG streams.
Note:You might have to align the input buffer buf and output buffer samples. The alignment requirements depend on the CPU: on some CPUs it isn't necessary at all, on others it won't work at all if not aligned and on others it will work but it will have an impact on performance. In practice, the bitstream should have 4 byte alignment at minimum and all sample data should be 16 byte aligned unless the CPU doesn't need it (AltiVec and SSE do). If the linesize is not a multiple of 16 then there's no sense in aligning the start of the buffer to 16.

SDL音频播放的更多相关文章

  1. FFMPEG + SDL音频播放分析

    目录 [hide] 1 抽象流程: 2 关键实现: 2.1 main()函数 2.2 decode_thread()读取文件信息和音频包 2.3 stream_component_open():设置音 ...

  2. 最简单的基于FFMPEG+SDL的音频播放器 ver2 (采用SDL2.0)

    ===================================================== 最简单的基于FFmpeg的音频播放器系列文章列表: <最简单的基于FFMPEG+SDL ...

  3. 最简单的基于FFMPEG+SDL的音频播放器 ver2 (採用SDL2.0)

    ===================================================== 最简单的基于FFmpeg的音频播放器系列文章列表: <最简单的基于FFMPEG+SDL ...

  4. 最简单的视音频播放示例9:SDL2播放PCM

    本文记录SDL播放音频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API ...

  5. 最简单的视音频播放示例7:SDL2播放RGB/YUV

    本文记录SDL播放视频的技术.在这里使用的版本是SDL2.实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API.在Windows平台下,SDL封装了Direct3D这类的API ...

  6. ffmpeg音频播放代码示例-avcodec_decode_audio4

    一.概述 最近在学习ffmpeg解码的内容,参考了官方的教程http://dranger.com/ffmpeg/tutorial03.html,结果发现这个音频解码的教程有点问题.参考了各种博客,并同 ...

  7. FFmpeg简易播放器的实现-音频播放

    本文为作者原创,转载请注明出处:https://www.cnblogs.com/leisure_chn/p/10068490.html 基于FFmpeg和SDL实现的简易视频播放器,主要分为读取视频文 ...

  8. 最简单的视音频播放演示样例7:SDL2播放RGB/YUV

    ===================================================== 最简单的视音频播放演示样例系列文章列表: 最简单的视音频播放演示样例1:总述 最简单的视音频 ...

  9. 视频和音频播放的演示最简单的例子9:SDL2广播PCM

    ===================================================== 最简单的视频和音频播放的演示样品系列列表: 最简单的视音频播放演示样例1:总述 最简单的视音 ...

随机推荐

  1. Apache Tomcat8必备知识

    Apache Tomcat8必备知识 作者:chszs,转载需注明.博客主页: http://blog.csdn.net/chszs 一.Apache Tomcat 8介绍 Apache Tomcat ...

  2. IE的CSS相关的BUG(整理一)

    本来不想弄这个ie的bug的,真的很想让它快点死掉,可是事与愿违啊,没办法,还是贴出来,以备自用. 这个网页(http://haslayout.net/css/index)上例举了所有的IE和CSS相 ...

  3. 高性能 Socket 组件 HP-Socket v3.2.1-RC5 公布

    HP-Socket 是一套通用的高性能 TCP/UDP Socket 组件,包括服务端组件.client组件和 Agent 组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/C+ ...

  4. Example of how to use both JDK 7 and JDK 8 in one build.--reference

    JDK 8 Released Most of us won’t be able to use/deploy JDK 8 in production for a looong time. But tha ...

  5. Android TagFlowLayout完全解析 一款针对Tag的布局(转)

    一.概述 本文之前,先提一下关于上篇博文的100多万访问量请无视,博文被刷,我也很郁闷,本来想把那个文章放到草稿箱,结果放不进去,还把日期弄更新了,实属无奈. ok,开始今天的博文,今天要说的是Tag ...

  6. Java基础知识强化83:System类之gc()方法(垃圾回收)以及和finalize()区别

    1. System概述: System类包含一些有用的类字段和方法.它不能被实例化. 2. gc()方法:垃圾回收器 public static void gc()       调用gc方法暗示着Ja ...

  7. 洛谷 P1412 经营与开发

    /* 粘一下开始写的暴力吧 虽然没啥价值 */ #include<iostream> #include<cstdio> #include<cstring> #inc ...

  8. setTimeout()与setInterval()方法区别介绍

    计时器setTimeout()和setInterval()两个都是js的计时功能的函数两个有些区别,下面为大家简单介绍下,希望对大家有所帮助   计时器setTimeout()和setInterval ...

  9. PHP常用代码大全

    1.连接MYSQL数据库代码 <?php $connec=mysql_connect("localhost","root","root" ...

  10. Mysql锁机制介绍

    Mysql锁机制介绍 一.概况MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制.比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking ...