目录:

1.集合set

2.计数器

3.有序字典

4.默认字典

5.可命名元组

6.队列

7.深浅拷贝

8.函数

9.lambda表达式

10.内置函数


一、集合set

set是一个无序且不重复的元素集合

 class set(object):
"""
set() -> new empty set object
set(iterable) -> new set object Build an unordered collection of unique elements.
"""
def add(self, *args, **kwargs): # real signature unknown
""" 添加 """
"""
Add an element to a set. This has no effect if the element is already present.
"""
pass def clear(self, *args, **kwargs): # real signature unknown
""" Remove all elements from this set. """
pass def copy(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a set. """
pass def difference(self, *args, **kwargs): # real signature unknown
"""
Return the difference of two or more sets as a new set. (i.e. all elements that are in this set but not the others.)
"""
pass def difference_update(self, *args, **kwargs): # real signature unknown
""" 删除当前set中的所有包含在 new set 里的元素 """
""" Remove all elements of another set from this set. """
pass def discard(self, *args, **kwargs): # real signature unknown
""" 移除元素 """
"""
Remove an element from a set if it is a member. If the element is not a member, do nothing.
"""
pass def intersection(self, *args, **kwargs): # real signature unknown
""" 取交集,新创建一个set """
"""
Return the intersection of two or more sets as a new set. (i.e. elements that are common to all of the sets.)
"""
pass def intersection_update(self, *args, **kwargs): # real signature unknown
""" 取交集,修改原来set """
""" Update a set with the intersection of itself and another. """
pass def isdisjoint(self, *args, **kwargs): # real signature unknown
""" 如果没有交集,返回true """
""" Return True if two sets have a null intersection. """
pass def issubset(self, *args, **kwargs): # real signature unknown
""" 是否是子集 """
""" Report whether another set contains this set. """
pass def issuperset(self, *args, **kwargs): # real signature unknown
""" 是否是父集 """
""" Report whether this set contains another set. """
pass def pop(self, *args, **kwargs): # real signature unknown
""" 移除 """
"""
Remove and return an arbitrary set element.
Raises KeyError if the set is empty.
"""
pass def remove(self, *args, **kwargs): # real signature unknown
""" 移除 """
"""
Remove an element from a set; it must be a member. If the element is not a member, raise a KeyError.
"""
pass def symmetric_difference(self, *args, **kwargs): # real signature unknown
""" 差集,创建新对象"""
"""
Return the symmetric difference of two sets as a new set. (i.e. all elements that are in exactly one of the sets.)
"""
pass def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
""" 差集,改变原来 """
""" Update a set with the symmetric difference of itself and another. """
pass def union(self, *args, **kwargs): # real signature unknown
""" 并集 """
"""
Return the union of sets as a new set. (i.e. all elements that are in either set.)
"""
pass def update(self, *args, **kwargs): # real signature unknown
""" 更新 """
""" Update a set with the union of itself and others. """
pass def __and__(self, y): # real signature unknown; restored from __doc__
""" x.__and__(y) <==> x&y """
pass def __cmp__(self, y): # real signature unknown; restored from __doc__
""" x.__cmp__(y) <==> cmp(x,y) """
pass def __contains__(self, y): # real signature unknown; restored from __doc__
""" x.__contains__(y) <==> y in x. """
pass def __eq__(self, y): # real signature unknown; restored from __doc__
""" x.__eq__(y) <==> x==y """
pass def __getattribute__(self, name): # real signature unknown; restored from __doc__
""" x.__getattribute__('name') <==> x.name """
pass def __ge__(self, y): # real signature unknown; restored from __doc__
""" x.__ge__(y) <==> x>=y """
pass def __gt__(self, y): # real signature unknown; restored from __doc__
""" x.__gt__(y) <==> x>y """
pass def __iand__(self, y): # real signature unknown; restored from __doc__
""" x.__iand__(y) <==> x&=y """
pass def __init__(self, seq=()): # known special case of set.__init__
"""
set() -> new empty set object
set(iterable) -> new set object Build an unordered collection of unique elements.
# (copied from class doc)
"""
pass def __ior__(self, y): # real signature unknown; restored from __doc__
""" x.__ior__(y) <==> x|=y """
pass def __isub__(self, y): # real signature unknown; restored from __doc__
""" x.__isub__(y) <==> x-=y """
pass def __iter__(self): # real signature unknown; restored from __doc__
""" x.__iter__() <==> iter(x) """
pass def __ixor__(self, y): # real signature unknown; restored from __doc__
""" x.__ixor__(y) <==> x^=y """
pass def __len__(self): # real signature unknown; restored from __doc__
""" x.__len__() <==> len(x) """
pass def __le__(self, y): # real signature unknown; restored from __doc__
""" x.__le__(y) <==> x<=y """
pass def __lt__(self, y): # real signature unknown; restored from __doc__
""" x.__lt__(y) <==> x<y """
pass @staticmethod # known case of __new__
def __new__(S, *more): # real signature unknown; restored from __doc__
""" T.__new__(S, ...) -> a new object with type S, a subtype of T """
pass def __ne__(self, y): # real signature unknown; restored from __doc__
""" x.__ne__(y) <==> x!=y """
pass def __or__(self, y): # real signature unknown; restored from __doc__
""" x.__or__(y) <==> x|y """
pass def __rand__(self, y): # real signature unknown; restored from __doc__
""" x.__rand__(y) <==> y&x """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self): # real signature unknown; restored from __doc__
""" x.__repr__() <==> repr(x) """
pass def __ror__(self, y): # real signature unknown; restored from __doc__
""" x.__ror__(y) <==> y|x """
pass def __rsub__(self, y): # real signature unknown; restored from __doc__
""" x.__rsub__(y) <==> y-x """
pass def __rxor__(self, y): # real signature unknown; restored from __doc__
""" x.__rxor__(y) <==> y^x """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" S.__sizeof__() -> size of S in memory, in bytes """
pass def __sub__(self, y): # real signature unknown; restored from __doc__
""" x.__sub__(y) <==> x-y """
pass def __xor__(self, y): # real signature unknown; restored from __doc__
""" x.__xor__(y) <==> x^y """
pass __hash__ = None set

set源码


二、计数器(counter)

Counter是对字典类型的补充,用于追踪值出现的次数

ps:具备字典的所有功能+自己的功能

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
 ########################################################################
### Counter
######################################################################## class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts >>> c['a'] # count of letter 'a'
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b' >>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a' >>> c.clear() # empty the counter
>>> c
Counter() Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)] '''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3 def __init__(self, iterable=None, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts. >>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args '''
super(Counter, self).__init__()
self.update(iterable, **kwds) def __missing__(self, key):
""" 对于不存在的元素,返回计数器为0 """
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0 def most_common(self, n=None):
""" 数量大于等n的所有元素和计数器 """
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1)) def elements(self):
""" 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it. '''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.iteritems())) # Override dict methods where necessary @classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(self, iterable=None, **kwds):
""" 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """
'''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch '''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts. if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds) def subtract(self, iterable=None, **kwds):
""" 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds) def copy(self):
""" 拷贝 """
'Return a shallow copy.'
return self.__class__(self) def __reduce__(self):
""" 返回一个元组(类型,元组) """
return self.__class__, (dict(self),) def __delitem__(self, elem):
""" 删除元素 """
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super(Counter, self).__delitem__(elem) def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items) # Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter() def __add__(self, other):
'''Add counts from two counters. >>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __sub__(self, other):
''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result def __or__(self, other):
'''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __and__(self, other):
''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc')
Counter({'b': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result Counter Counter

counter源码


三、有序字典

orderdDict是对字典类型的补充,他记住了字典元素添加的顺序

例:

dic = collections.OrderedDict()
dic['k1']='v1'
dic['k2']='v2'
dic['k3']='v3'
print(dic)

操作方法与字典操作方法相同


四、默认字典

dic=collections.defaultdict(list)
dic['k1'].append('cat')
print(dic)

操作方法与字典操作方法相同


五、可命名元组(namedtuple)

根据nametuple可以创建一个包含tuple所有功能以及其他功能的类型。

import collections

Mytuple = collections.namedtuple('Mytuple',['x', 'y', 'z'])

六、队列

双向队列(deque):

d = collections.deque()
d.append('') #添加数据到队列
d.appendleft('') #添加数据到队列左边
d.appendleft('')
print(d)
r = d.count('') #查看1在队列里的个数
print(r)
d.extend(['yy','uu','ii']) #添加多个元素到列表
d.extendleft(['y1y','u1u','i1i']) #添加多个元素到列表左边
print(d)
d.rotate(5) #将右边的值按顺序放到左边,括号里的值为要取值的个数
print(d)

单向队列(queue):

import queue

q = queue.Queue()
q.put('')
q.put('') #将数据添加到队列
print(q.qsize()) #获取队列中数据的个数
print(q.get()) #拿取队列中的数据(先进先出原则)

七、深浅拷贝

对于 数字 和 字符串 而言,赋值、浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址。

import copy
# ######### 数字、字符串 #########
n1 = 123
# n1 = "i am alex age 10"
print(id(n1))
# ## 赋值 ##
n2 = n1
print(id(n2))
# ## 浅拷贝 ##
n2 = copy.copy(n1)
print(id(n2)) # ## 深拷贝 ##
n3 = copy.deepcopy(n1)
print(id(n3))

对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。

赋值,只是创建一个变量,该变量指向原来内存地址,如:

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}

n2 = n1

浅拷贝,在内存中只额外创建第一层数据

import copy

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}

n3 = copy.copy(n1)

深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)

import copy

n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}

n4 = copy.deepcopy(n1)


八、函数

一、背景

在学习函数之前,一直遵循:面向过程编程,即:根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,也就是将之前实现的代码块复制到现需功能处,如下:

while True:
if cpu利用率 > 90%:
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 if 硬盘使用空间 > 90%:
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 if 内存占用 > 80%:
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接

仔细一看上述代码,if条件语句下的内容可以被提取出来公用,如下:

def 发送邮件(内容)
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 while True: if cpu利用率 > 90%:
发送邮件('CPU报警') if 硬盘使用空间 > 90%:
发送邮件('硬盘报警') if 内存占用 > 80%:

对于上述的两种实现方式,第二次必然比第一次的重用性和可读性要好,其实这就是函数式编程和面向过程编程的区别:

  • 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
  • 面向对象:对函数进行分类和封装,让开发“更快更好更强...”

函数式编程最重要的是增强代码的重用性和可读性

二、定义和使用

def 函数名(参数):

    ...
函数体
...

函数的定义主要有如下要点:

  • def:表示函数的关键字
  • 函数名:函数的名称,日后根据函数名调用函数
  • 函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
  • 参数:为函数体提供数据
  • 返回值:当函数执行完毕后,可以给调用者返回数据。

以上要点中,比较重要有参数和返回值:

1、返回值

函数是一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。

def 发送短信():

    发送短信的代码...

    if 发送成功:
return True
else:
return False while True: # 每次执行发送短信函数,都会将返回值自动赋值给result
# 之后,可以根据result来写日志,或重发等操作 result = 发送短信()
if result == False:
记录日志,短信发送失败...

2、参数

为什么要有参数?

 def 发送邮件(邮件内容)

     #发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 while True: if cpu利用率 > 90%:
发送邮件("CPU报警了。") if 硬盘使用空间 > 90%:
发送邮件("硬盘报警了。") if 内存占用 > 80%:
发送邮件("内存报警了。")

有参数实现

 def CPU报警邮件()
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 def 硬盘报警邮件()
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 def 内存报警邮件()
#发送邮件提醒
连接邮箱服务器
发送邮件
关闭连接 while True: if cpu利用率 > 90%:
CPU报警邮件() if 硬盘使用空间 > 90%:
硬盘报警邮件() if 内存占用 > 80%:
内存报警邮件()

无参数实现

函数的有三中不同的参数:

  • 普通参数
  • 默认参数
  • 动态参数
 # ######### 定义函数 ######### 

 # name 叫做函数func的形式参数,简称:形参
def func(name):
print name # ######### 执行函数 #########
# 'spykdis' 叫做函数func的实际参数,简称:实参
func('spykdis')

普通参数

 def func(name, age = 18):

     print "%s:%s" %(name,age)

 # 指定参数
func('cat', 19)
# 使用默认参数
func('tom') 注:默认参数需要放在参数列表最后

默认参数

 def func(*args):

     print args

 # 执行方式一
func(11,33,4,4454,5) # 执行方式二
li = [11,2,2,3,3,4,54]
func(*li)

动态参数-序列

 def func(**kwargs):

     print args

 # 执行方式一
func(name='tom',age=18) # 执行方式二
li = {'name':'tom', age:18, 'gender':'male'}
func(**li)

动态参数-字典

 def func(*args, **kwargs):

     print args
print kwargs

动态参数-序列和字典


九、lambda表达式

学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:

# 普通条件语句
if 1 == 1:
name = 'wupeiqi'
else:
name = 'alex' # 三元运算
name = 'wupeiqi' if 1 == 1 else 'alex'

对于简单的函数,也存在一种简便的表示方式,即:lambda表达式

# ###################### 普通函数 ######################
# 定义函数(普通方式)
def func(arg):
return arg + 1 # 执行函数
result = func(123) # ###################### lambda ###################### # 定义函数(lambda表达式)
my_lambda = lambda arg : arg + 1 # 执行函数
result = my_lambda(123)

lambda存在意义就是对简单函数的简洁表示


十、内置函数

详细见python文档,猛击这里


map

遍历序列,对序列中每个元素进行操作,最终获取新的序列。

 li = [11, 22, 33]

 new_list = map(lambda a: a + 100, li)

每个元素增加100

 li = [11, 22, 33]
sl = [1, 2, 3]
new_list = map(lambda a, b: a + b, li, sl)

两个列表相同元素相加

filter

对于序列中的元素进行筛选,最终获取符合条件的序列

 li = [11, 22, 33]

 new_list = filter(lambda arg: arg > 22, li)

 #filter第一个参数为空,将获取原来序列

获取列表中大于12的所有元素集合

reduce

对于序列内所有元素进行累计操作

 li = [11, 22, 33]

 result = reduce(lambda arg1, arg2: arg1 + arg2, li)

 # reduce的第一个参数,函数必须要有两个参数
# reduce的第二个参数,要循环的序列
# reduce的第三个参数,初始值

获取序列中所有元素的和


python学习day3的更多相关文章

  1. python学习-day3

    今天是第三天学习,加油! 第一部分 集合 一.集合 1.什么是集合以及特性? 特性:无序的,不重复的序列,可嵌套. 2.创建集合 方法一:创建空集合 s1 = set() print(type(s1) ...

  2. python学习Day3 变量、格式化输出、注释、基本数据类型、运算符

    今天复习内容(7项) 1.语言的分类 -- 机器语言:直接编写0,1指令,直接能被硬件执行 -- 汇编语言:编写助记符(与指令的对应关系),找到对应的指令直接交给硬件执行 -- 高级语言:编写人能识别 ...

  3. python学习 day3 (3月4日)---字符串

    字符串: 下标(索引) 切片[起始:终止] 步长[起始:终止:1] 或者-1 从后往前 -1 -2 -3 15个专属方法: 1-6  : 格式:大小写 , 居中(6) s.capitalize() s ...

  4. Python学习day3作业

    days3作业 作业需求 HAproxy配置文件操作 根据用户输入,输出对应的backend下的server信息 可添加backend 和sever信息 可修改backend 和sever信息 可删除 ...

  5. python学习day3 编程语言分类 变量 格式化输出

    1.编程语言分类 机器语言:直接使用二进制指令直接编写程序,直接操作计算机硬件,必须考虑硬件细节 汇编语言:使用英文标签代替二进制指令去编写程序,直接操作计算机硬件,必须考虑硬件细节对,不过相比机器语 ...

  6. Python学习day3 数据类型Ⅰ(str,int,bool)

    day3  数据类型 @上节内容补充 每周一个思维导图-xmind.exe in / not in #示例:(是否包含敏感字符)while True:    text = input('请输入你要说的 ...

  7. Python学习笔记,day3

    Python学习第三天 一.集合 集合是一个无序的,不重复的数据组合,它的主要作用如下: 去重,把一个列表变成集合,就自动去重了 关系测试,测试两组数据之前的交集.差集.并集等关系 常用操作: s = ...

  8. python s12 day3

    python s12 day3   深浅拷贝 对于 数字 和 字符串 而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

  9. python学习博客地址集合。。。

    python学习博客地址集合...   老师讲课博客目录 http://www.bootcdn.cn/bootstrap/  bootstrap cdn在线地址 http://www.cnblogs. ...

随机推荐

  1. spring springMVC mybatis 集成

    最近闲来无事,整理了一下spring springMVC mybatis 集成,关于这个话题在园子里已经有很多人写过了,我主要是想提供一个完整的demo,涵盖crud,事物控制等. 整个demo分三个 ...

  2. Socket 编程示例(二)

    利用晚上这点闲暇时间,写了一个Socket通信的小实例,该实例包含服务器端和客户端.其基本工作流程是:当服务器启动服务以后,客户端进行连接,如果连接成功,则用户可以在发送消息框中输入待发送的消息,然后 ...

  3. C# 文件/文件夹压缩

    一.ZipFile ZipFile类用于选择文件或文件夹进行压缩生成压缩包. 常用属性: 属性 说明 Count 文件数目(注意是在ComitUpdat之后才有) Password 压缩包密码 Siz ...

  4. 在Eclipse中用SWT设计界面

    摘自http://www.tulaoshi.com/n/20160129/1488574.html 在Eclipse中用SWT设计界面 1. 为什么要使用SWT?  SWT是一个IBM开发的跨平台GU ...

  5. C语言结构体的内存对齐问题

    在C语言开发当中会遇到这样的情况: #include <stdio.h> struct test { int a; char b; }; int main(int argc, const ...

  6. Unity 扩展属性自定义绘制

    这么晚了准备睡觉的时候,去学习了一会. 发现一个标题好奇的点进去. 居然是自定义绘制属性.  在前几天这个问题把我难住了,没想到几分钟就能解决的问题. 我花了半天时间使用反射去解决...  如果我们想 ...

  7. 本人对于JavaScript的一些总结

    类型.值和变量 1.原始类型   数字.字符串和布尔   null空  undefined未定义 2.对象类型 3.类  Array  Function Date RegExp  Error 4.js ...

  8. iOS安全攻防(二十三):Objective-C代码混淆

    iOS安全攻防(二十三):Objective-C代码混淆 class-dump能够非常方便的导出程序头文件,不仅让攻击者了解了程序结构方便逆向,还让着急赶进度时写出的欠完好的程序给同行留下笑柄. 所以 ...

  9. [Python笔记][第二章Python序列-复杂的数据结构]

    2016/1/27学习内容 第二章 Python序列-复杂的数据结构 堆 import heapq #添加元素进堆 heapq.heappush(heap,n) #小根堆堆顶 heapq.heappo ...

  10. yum安裝的包如何保留到本地

    一, 很多时候,我们一直用yum安装的软件,但是毫无疑问,很多人都会想yum安装的软件的包存放在哪里了呢? 这是因为yum默认并不保存你所安装的包,那么如何才能保留安装的软件包呢? 方法很简单:修改y ...