Building a Space Station

Time Limit: 1000MS Memory Limit: 30000K

Total Submissions: 4400 Accepted: 2255

Description



You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.


Input



The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output



For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.


Sample Input



3

10.000 10.000 50.000 10.000

40.000 10.000 50.000 10.000

40.000 40.000 50.000 10.000

2

30.000 30.000 30.000 20.000

40.000 40.000 40.000 20.000

5

5.729 15.143 3.996 25.837

6.013 14.372 4.818 10.671

80.115 63.292 84.477 15.120

64.095 80.924 70.029 14.881

39.472 85.116 71.369 5.553

0

Sample Output



20.000

0.000

73.834

Source

Japan 2003 Domestic

<span style="color:#6600cc;">/*********************************************

        author    :    Grant Yuan
time : 2014.7.31
algorithm : prim
source : POJ 2031 **********************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define INF 0x3fffffff
#define MAX 103 using namespace std; struct edge{double x,y,z,r;};
double cost[MAX][MAX];
int n;
edge e[MAX];
double ans;
double mincost[MAX];
bool used[MAX]; void prim()
{
ans=0;
memset(used,0,sizeof(used));
for(int i=1;i<=n;i++)
{
mincost[i]=INF;;
}
mincost[1]=0;
while(1){
int v=-1;
for(int i=1;i<=n;i++)
{
if(!used[i]&&(v==-1||mincost[i]<mincost[v]))
v=i;}
if(v==-1) break;
used[v]=true;
ans+=mincost[v];
for(int i=1;i<=n;i++)
{
mincost[i]=min(mincost[i],cost[v][i]);
} } } int main()
{
while(1){
scanf("%d",&n);
if(!n) break;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&e[i].x,&e[i].y,&e[i].z,&e[i].r); }
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
cost[i][j]=INF;
cost[i][j]=cost[j][i]=sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y)+(e[i].z-e[j].z)*(e[i].z-e[j].z))-e[i].r-e[j].r;
if(cost[i][j]<0)
cost[i][j]=cost[j][i]=0;
}
prim();
printf("%.3f\n",ans);
}
return 0; } </span>

POJ 2031 prim的更多相关文章

  1. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. Prim POJ 2031 Building a Space Station

    题目传送门 题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度. 分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和 ...

  4. POJ 2031 Building a Space Station (prim裸题)

    Description You are a member of the space station engineering team, and are assigned a task in the c ...

  5. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  6. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  7. POJ 2421(prim)

    http://poj.org/problem?id=2421 这个题和poj1258是一样的,只要在1258的基础上那么几行代码,就可以A,水. 题意:还是n连通问题,和1258不同的就是这个还有几条 ...

  8. Poj(1251),Prim字符的最小生成树

    题目链接:http://poj.org/problem?id=1251 字符用%s好了,方便一点. #include <stdio.h> #include <string.h> ...

  9. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

随机推荐

  1. BZOJ 1572: [Usaco2009 Open]工作安排Job( 贪心 )

    贪心... 按截止时间排序 , 然后从小到大考虑 . 假设当前考虑第 i 个任务 , 若目前已选工作数 < D_i , 那就选 i ; 否则 若已选工作中利润最小的比 P_i 小 , 那就去除它 ...

  2. C# 模拟提交带附件(input type=file)的表单

    今天调用某API时,对于文档中的传入参数:File[] 类型,感觉很陌生,无从下手! 按通常的方式在json参数中加入file的二进制数据提交,一直报错(参数错误)!后来经过多方咨询,是要换一种 表单 ...

  3. poj2774之最长公共子串

    Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 18794   Accepted: 77 ...

  4. Week15(12月16日):授课综述1

    Part I:提问 =========================== 1.(   )类提供了一个对Entity Framework的抽象,能够进行数据持久化并接受数据. A.Layout    ...

  5. windows apache 配置多个服务 站点 Apache Service Monitor

    把Apache安装为多个Window NT服务 ~~~ 可以在 services.msc中查看到1. 在DOS下跳到Apache安装目录里的bin目录(~~~或者用path命令 把apache的安装目 ...

  6. [WPF疑难]Hide me! not close

    原文 [WPF疑难]Hide me! not close [WPF疑难]Hide me! not close                               周银辉 有朋友遇到这样的一个问 ...

  7. Distinguishing Between Embedded and General-Purpose Computing

    标题:嵌入式系统与通用计算机系统的区别 To understand what falls into the category of embedded computing ,it is instruct ...

  8. 记录一次SQL查询语句

    以前发现比较经典的句子,都是记录在电脑上,我今天想搬到博客上,在我看来,写博客真的是一件非常头疼的事,它是内心的一道坎,我必须得跨过它. CREATE TABLE t_jeff ( id int NO ...

  9. 代理丶通知丶KVO之间区别和各自优势

    文/OyeOnoOmg(简书作者)原文链接:http://www.jianshu.com/p/75d3fd218a23著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”. 今天在网上看到一个 ...

  10. ios8.1上运行程序,程序界面只显示一部分

    在ios 9.1上运行程序没问题 但是在8.1上运行发现模拟器上只显示了程序的一小部分界面,没有显示完全. 结果发现由以下代码设置问题引起的 - (BOOL)application:(UIApplic ...