Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 138410    Accepted Submission(s): 32144

Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
 
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 
Sample Output
Case 1:
14 1 4

Case 2:
7 1 6

 
Author
Ignatius.L
这题是一个经典dp问题,dp思想在于把问题分解成若干个子问题,在子问题最优的情况下得出最终最优结果,所以我们每一步都是建立在前一步是最优的基础之上的。所以解决dp问题,最基本的要在某种情景下,想到当前状态的最优情况是什么样的,最优后,接下来怎么办,不是最优的该怎么变成最优的。这就是我们的状态转移方程。
对于本问题,首先明确,连续的子段! 和最大 ,一个数组给我们,第一个数肯定当前最大,毋庸置疑,那么遇到下一个数,怎么判断和是当前最大呢?我们遇到正数,那肯定直接加,因为加完肯定比不加大,如果是负数呢?加上去,原来的和肯定变小,但不加怎么办呢?
基于以上问题 可以得出状态方程 dp[i]=d[i-1]+a[i]>a[i]?dp[i-1]+a[i]:a[i]  (dp[i]表示当前i下最大的子段和,a[i]是需要处理的数字)什么意思呢,当前数字加到之前的和上面后,如果大于当前数字,那么就执行加的操作,如果小于当前数字,就把当前和最大值dp[i]设置为a[i],可能有人问为什么要设置为a[i]。。记住,如果a[i]你不加上去,意味着你需要从新开始累加和了,我们要求是连续的子段和!!!
利用dp数组的代码:
 #include<iostream>
#include<cstdio>
#include<cstdlib>
//#define LOCAL
using namespace std; int main()
{
#ifdef LOCAL
freopen("d:datain.txt","r",stdin);
freopen("d:dataout.txt","w",stdout);
#endif
int n;
while(scanf("%d",&n)!=EOF)
{
int i,m;
for(i = ; i< n;i++)
{
scanf("%d",&m);
int dp[],a[];
scanf("%d",&a[]);
dp[] = a[]; //当前最大
for(int j = ; j<m;j++) //生成了dp状态数组了
{
scanf("%d",&a[j]);
if(dp[j-]+a[j]<a[j]) //状态转移方程
dp[j]=a[j];
else
dp[j]=dp[j-]+a[j];
}
int Max,End;
Max = dp[];
End = ;
for(int j = ;j<m;j++) //寻找区间
if(Max<dp[j])
{
End = j;
Max = dp[j];
}
int Begin = End;
int temp = ;
for(int j = End;j>=;j--)
{
temp +=a[j];
if(temp==dp[End])
Begin = j;
}
cout<<"Case "<<i+<<":"<<endl<<Max<<" "<<Begin+<<" "<<End+<<endl;
if(i<n-)
cout<<endl;
}
}
return ;
}

简化后不带dp数组的,因为这题在dp问题中是比较简单的。

 //hdu 1003

 #include<stdio.h>
int main()
{ int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ;i<n;i++)
{
int a;
int Max = -;
int sum = ,m;
int Begin=,End=,flag=;
scanf("%d",&m);
scanf("%d",&a);
Max = sum = a;
for(int j = ;j<m ;j++)
{
scanf("%d",&a);
if(sum<)
{
sum=a;
flag=j;
}
else
{ sum=sum+a;
}
if(Max<sum)
{
Max = sum ;
Begin =flag;
End = j;
}
}
printf("Case %d:\n%d %d %d\n",i+,Max,Begin+,End+);
if(i<n-)
printf("\n");
} }
return ;
}

hdu1003的更多相关文章

  1. hdu1000,hdu1001,hdu1002,hdu1003

    hdu1000 仅仅是为了纪念 #include <cstdio> int main() { int a,b; while (scanf("%d%d",&a,& ...

  2. hdu1003 1024 Max Sum&Max Sum Plus Plus【基础dp】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4302208.html   ---by 墨染之樱花 dp是竞赛中常见的问题,也是我的弱项orz, ...

  3. hdu1003 Max Sum(最大子串)

    https://vjudge.net/problem/HDU-1003 注意考虑如果全为负的情况,特判. 还有输出格式,最后一个输出不用再空行. #include<iostream> #i ...

  4. hdu1003 Max Sum【最大连续子序列之和】

    题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...

  5. 解题报告:hdu1003 Max Sum - 最大连续区间和 - 计算开头和结尾

    2017-09-06 21:32:22 writer:pprp 可以作为一个模板 /* @theme: hdu1003 Max Sum @writer:pprp @end:21:26 @declare ...

  6. HDU1003 简单DP

    Max Sum Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the ...

  7. HDu1003(maxn sum)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABBcAAAMDCAYAAAD5XP0yAAAgAElEQVR4nOy97a8c133n2X+H3xjIC4

  8. hdu1003 dp

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1003 #include<cstdio> #include<algorit ...

  9. hdu1003 dp(最大子段和)

    题意:给出一列数,求其中的最大子段和以及该子段的开头和结尾位置. 因为刚学过DP没几天,所以还会这题,我开了一个 dp[100002][2],其中 dp[i][0] 记录以 i 为结尾的最大子段的和, ...

  10. HDU1003前导和

    简单维护前导和 #include<stdio.h> int main() { ],cas,key=; scanf("%d",&cas); while(cas-- ...

随机推荐

  1. (?m) 标记

    <pre name="code" class="html">在和 codec/multiline 搭配使用的时候,需要注意一个问题,grok 正则和 ...

  2. iOS开发之property属性介绍

    大家都知道@property和@synthesize可以自动生成某个类成员变量的存取方法,但可能对property中的一些属性不是很了解,网上的一些介绍有的不是很正确,感觉会误导新手,于是准备详细介绍 ...

  3. 健康管理app要注意哪些要点

    健康管理app现在变得越来越热,越来越多的垂直领域的加入,让健康app的市场逐渐扩大,但移动健康管理app仍有许多缺陷需要解决.健康管理并不是治病,而是让健康的人更好的保持身体健康状态,让慢性病高风险 ...

  4. C++对象模型浅析

    本文仅代表博主自己对C++内存对象模型的一点理解,如果文中有 理解偏差和不准确的地方,希望各位大大提出,我好及时改正. 本博文只对博主自己负责,不对任何人负责. 就如<深度探索C++对象模型&g ...

  5. HDOJ-1017 A Mathematical Curiosity(淼)

    http://acm.hdu.edu.cn/showproblem.php?pid=1017 # include <stdio.h> int find(int n, int m) { in ...

  6. NicEdit - WYSIWYG Content Editor, Inline Rich Text Application

    NicEdit - WYSIWYG Content Editor, Inline Rich Text Application By calling the nicEditors.allTextarea ...

  7. initial pointer [expert c]

    initial differece between pointer and array Both arrays and pointers can be initialized with a liter ...

  8. PHP Database ODBC 之 ODBC

    ODBC 是一种应用程序编程接口(Application Programming Interface,API),使我们有能力连接到某个数据源(比如一个 MS Access 数据库). 创建 ODBC ...

  9. hdu 4750 Count The Pairs(并查集+二分)

    Problem Description With the 60th anniversary celebration of Nanjing University of Science and Techn ...

  10. ZOJ1372 POJ 1287 Networking 网络设计 Kruskal算法

    题目链接:problemCode=1372">ZOJ1372 POJ 1287 Networking 网络设计 Networking Time Limit: 2 Seconds     ...