Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 138410    Accepted Submission(s): 32144

Problem Description
Given
a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max
sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in
this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
 
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 
Sample Output
Case 1:
14 1 4

Case 2:
7 1 6

 
Author
Ignatius.L
这题是一个经典dp问题,dp思想在于把问题分解成若干个子问题,在子问题最优的情况下得出最终最优结果,所以我们每一步都是建立在前一步是最优的基础之上的。所以解决dp问题,最基本的要在某种情景下,想到当前状态的最优情况是什么样的,最优后,接下来怎么办,不是最优的该怎么变成最优的。这就是我们的状态转移方程。
对于本问题,首先明确,连续的子段! 和最大 ,一个数组给我们,第一个数肯定当前最大,毋庸置疑,那么遇到下一个数,怎么判断和是当前最大呢?我们遇到正数,那肯定直接加,因为加完肯定比不加大,如果是负数呢?加上去,原来的和肯定变小,但不加怎么办呢?
基于以上问题 可以得出状态方程 dp[i]=d[i-1]+a[i]>a[i]?dp[i-1]+a[i]:a[i]  (dp[i]表示当前i下最大的子段和,a[i]是需要处理的数字)什么意思呢,当前数字加到之前的和上面后,如果大于当前数字,那么就执行加的操作,如果小于当前数字,就把当前和最大值dp[i]设置为a[i],可能有人问为什么要设置为a[i]。。记住,如果a[i]你不加上去,意味着你需要从新开始累加和了,我们要求是连续的子段和!!!
利用dp数组的代码:
 #include<iostream>
#include<cstdio>
#include<cstdlib>
//#define LOCAL
using namespace std; int main()
{
#ifdef LOCAL
freopen("d:datain.txt","r",stdin);
freopen("d:dataout.txt","w",stdout);
#endif
int n;
while(scanf("%d",&n)!=EOF)
{
int i,m;
for(i = ; i< n;i++)
{
scanf("%d",&m);
int dp[],a[];
scanf("%d",&a[]);
dp[] = a[]; //当前最大
for(int j = ; j<m;j++) //生成了dp状态数组了
{
scanf("%d",&a[j]);
if(dp[j-]+a[j]<a[j]) //状态转移方程
dp[j]=a[j];
else
dp[j]=dp[j-]+a[j];
}
int Max,End;
Max = dp[];
End = ;
for(int j = ;j<m;j++) //寻找区间
if(Max<dp[j])
{
End = j;
Max = dp[j];
}
int Begin = End;
int temp = ;
for(int j = End;j>=;j--)
{
temp +=a[j];
if(temp==dp[End])
Begin = j;
}
cout<<"Case "<<i+<<":"<<endl<<Max<<" "<<Begin+<<" "<<End+<<endl;
if(i<n-)
cout<<endl;
}
}
return ;
}

简化后不带dp数组的,因为这题在dp问题中是比较简单的。

 //hdu 1003

 #include<stdio.h>
int main()
{ int n;
while(scanf("%d",&n)!=EOF)
{
for(int i = ;i<n;i++)
{
int a;
int Max = -;
int sum = ,m;
int Begin=,End=,flag=;
scanf("%d",&m);
scanf("%d",&a);
Max = sum = a;
for(int j = ;j<m ;j++)
{
scanf("%d",&a);
if(sum<)
{
sum=a;
flag=j;
}
else
{ sum=sum+a;
}
if(Max<sum)
{
Max = sum ;
Begin =flag;
End = j;
}
}
printf("Case %d:\n%d %d %d\n",i+,Max,Begin+,End+);
if(i<n-)
printf("\n");
} }
return ;
}

hdu1003的更多相关文章

  1. hdu1000,hdu1001,hdu1002,hdu1003

    hdu1000 仅仅是为了纪念 #include <cstdio> int main() { int a,b; while (scanf("%d%d",&a,& ...

  2. hdu1003 1024 Max Sum&Max Sum Plus Plus【基础dp】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4302208.html   ---by 墨染之樱花 dp是竞赛中常见的问题,也是我的弱项orz, ...

  3. hdu1003 Max Sum(最大子串)

    https://vjudge.net/problem/HDU-1003 注意考虑如果全为负的情况,特判. 还有输出格式,最后一个输出不用再空行. #include<iostream> #i ...

  4. hdu1003 Max Sum【最大连续子序列之和】

    题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...

  5. 解题报告:hdu1003 Max Sum - 最大连续区间和 - 计算开头和结尾

    2017-09-06 21:32:22 writer:pprp 可以作为一个模板 /* @theme: hdu1003 Max Sum @writer:pprp @end:21:26 @declare ...

  6. HDU1003 简单DP

    Max Sum Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the ...

  7. HDu1003(maxn sum)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABBcAAAMDCAYAAAD5XP0yAAAgAElEQVR4nOy97a8c133n2X+H3xjIC4

  8. hdu1003 dp

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1003 #include<cstdio> #include<algorit ...

  9. hdu1003 dp(最大子段和)

    题意:给出一列数,求其中的最大子段和以及该子段的开头和结尾位置. 因为刚学过DP没几天,所以还会这题,我开了一个 dp[100002][2],其中 dp[i][0] 记录以 i 为结尾的最大子段的和, ...

  10. HDU1003前导和

    简单维护前导和 #include<stdio.h> int main() { ],cas,key=; scanf("%d",&cas); while(cas-- ...

随机推荐

  1. vue.js的devtools安装

    安装 1.github下载地址:https://github.com/vuejs/vue-devtools 2.下载好后进入vue-devtools-master工程  执行npm install - ...

  2. hdu 5631 Rikka with Graph(图)

    n个点最少要n-1条边才能连通,可以删除一条边,最多删除2条边,然后枚举删除的1条边或2条边,用并查集判断是否连通,时间复杂度为O(n^3) 这边犯了个错误, for(int i=0;i<N;i ...

  3. Unity 改变类模板-为你的类添加一个命名空间

    之前在写代码的时候,就很疑惑为什么创建类的时候.没有命名空间呢?   后来自己的类终于和别人写的类名字有冲突.... 如何修改Unity创建类的模板呢?  找到下面这个文件 然后修改 保存文件在Uni ...

  4. C++ Primer 有感(异常处理)

    1.异常是通过抛出对象而引发的.该对象的类型决定应该激活哪个处理代码.被选中的处理代码是调用链中与该对象类型匹配且离抛出异常位置最近的那个. 2.执行throw的时候,不会执行跟在throw后面的语句 ...

  5. centos网速特别慢的最佳解决的方法 - 关闭ipv6

    我使用了centOS,可是发现网速实在是卡得差点儿不能上网,连百度都打不开,可是win却飞快. 后来想到偶然记得有一次看过一段话,说到关闭ipv6,測试来一下,果然有效,关闭来ipv6打开网速飞快. ...

  6. 点滴记录——Centos 6.5 yum安装Ganglia

    转载请说明出处:http://blog.csdn.net/cywosp/article/details/39701141 注:下面操作都仅仅是在一台机器上操作 1. 安装php支持  yum inst ...

  7. Web页面布局方式小结

    Web页面是由块元素组成的,正常情况下块元素一个个按垂直方向排布,构成了页面.可是这样的主要的布局方式绝大多时候不能满足我们的需求,所以各种布局方式应运而生,本文就对这些布局方式做个小结. 1.元素漂 ...

  8. Android应用程序组件Content Provider的共享数据更新通知机制分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6985171 在Android系统中,应用程序组 ...

  9. sublime 快键

    Keyboard Shortcuts - Windows/Linux Warning This topic is a draft and may contain wrong information. ...

  10. HTML5新增的主体元素和新增的非主体结构元素

    HTML5新增的主体元素 article元素 article元素表示文档.页面或应用程序中独立的.完整的.可以独自被外部引用的内容.它可以是一篇博客或者报刊中的文章,一篇论坛帖子.一段用户评论或独立的 ...