思路:首先考虑t=1的情况,t等于1,那么所有位置的颜色相同,我们不用考虑概率的问题,那么,k+d*x在模d下都相等,我们考虑预处理一个数组s[i][j],代表d为i,起始位置为j的等差数列的和,这个可以证明,当模小于等于sqrt(n)的时候可以完美解决,时间复杂度为N^1.5,对于d大于sqrt(n)的情况,只需要暴力枚举就可以了。

再考虑t>=2的情况,我们选的颜色一定是颜色数最少的那个,颜色数最少的颜色的期望绝对是最小的,然后,我们分k的左边和k的右边进行计算,我们这里称呼k+d*x的位置,叫做关键位置,假设p[i]为i到k这一段上所有的关键位置全部都是同一个颜色的概率,那么转移,就是p[i+k]=p[i]*(x)/(n-1-x),x为最少的颜色个数。我们可以发现,x<(n-1)/2,p[i]是随指数级衰减的,那么我们只需要枚举一小段,当p[i]<eps时,那么它对答案就几乎没有影响了。

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
int block,n,m;
int s[][],a[];
const double eps=1e-;
int read(){
int t=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void init(){
n=read();m=read();
for (int i=;i<=n;i++) a[i]=read();
block=ceil(sqrt(n))+0.1;
for (int i=;i<=block;i++)
for (int j=;j<=i;j++)
for (int k=j;k<=n;k+=i)
s[i][j]+=a[k];
}
void modify(int x,int y){
int T=y-a[x];
for (int i=;i<=block;i++)
s[i][(x-)%i+]+=T;
a[x]=y;
}
double deal(int k,int d){
if (d<=block) return s[d][(k-)%d+];
double res=;
for (int i=(k-)%d+;i<=n;i+=d)
res+=(double)a[i];
return res;
}
void solve(){
while (m--){
int opt=read();
if (opt==){
int x=read(),y=read();
modify(x,y);continue;
}
int num=0x7fffffff,t,k,d;
t=read();k=read();d=read();for (int i=;i<=t;i++){int l=read();num=std::min(num,l);}
if (t==) {printf("%.4f\n",deal(k,d));continue;}
double ans=(double)a[k],p=;
int N=num;
for (int i=k+d,Num=n-;i<=n&&num>;i+=d,Num--,num--){
p=p*num/Num;ans+=p*a[i];
if (p<eps&&n>=) break;
}
num=N;p=;
for (int i=k-d,Num=n-;i>=&&num>;i-=d,Num--,num--){
p=p*num/Num;ans+=p*a[i];
if (p<eps&&n>=) break;
}
printf("%.4f\n",ans);
}
}
int main(){
init();
solve();
}

BZOJ NOI十连测 第一测 T1的更多相关文章

  1. BZOJ NOI十连测 第二测 T1

    出题人居然是个哲学家.. 26%的程序,太SB了...本来我的想法也是二分+贪心,但是贪心是个怪怪的SX贪心.. #include<algorithm> #include<cstdi ...

  2. BZOJ NOI十连测 第一测 T2

    思路:看到这题,就感觉是一道很熟悉的题目: http://www.cnblogs.com/qzqzgfy/p/5535821.html 只不过这题的K最多可以到N,而且边权不再只是1,考试的时候yy了 ...

  3. BZOJ NOI十连测 第二测 T2

    思路:20%可以搜索.. #include<algorithm> #include<cstdio> #include<cmath> #include<cstr ...

  4. 痞子衡嵌入式:测一测i.MXRT1170 Raw NAND启动时间(从POR到进App的Reset_Handler)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1170 Raw NAND启动时间. 关于i.MXRT1170这颗划时代的MCU,痞子衡去年10月在其刚发布的时候, ...

  5. 「NOI十联测」深邃

    「NOI十联测」深邃 要使得最大的连通块最小,显然先二分答案. 先固定1结点为根. 对于一个果实,显然是先处理子树中未分配的点,再向外延伸. 每个结点记录一个\(si[]\),表示子树中未分配的点数, ...

  6. 「NOI十联测」奥义商店

    「NOI十联测」奥义商店 若lzz想花费最少的钱,那么显然要选择数目较少的颜色. 先考虑暴力的写法. 每次向两边统计,每个物品要求被买的概率可以由上一个物品推出. now=1;//now 被买概率 M ...

  7. 「NOI十联测」黑暗

    「NOI十联测」黑暗 \(n\) 个点的无向图,每条边都可能存在,一个图的权值是连通块个数的 \(m\) 次方,求所有可能的图的权值和.(n≤30000,m≤15) 令\(ans[n][m]\)为n个 ...

  8. NOI十连测 第六测 T1

    思路: 用treap动态维护,记一个sum1,sum2,注意!,写treap如果有删除操作,千万不能把权值相同的分开来..,这在删除的时候会进入死循环,这是一个惨痛的教训... #include< ...

  9. NOI十连测 第五测 T1

    #include<cstdio> #include<cstring> #include<cmath> #include<iostream> #inclu ...

随机推荐

  1. XPath <第四篇>

    .Net框架下的System.Xml.XPath命名空间提供了一系列的类,允许你应用XPath数据模式查询和展示XML文档数据. 一.XPath介绍 XPath有七种类型的节点:元素.属性.文本.命名 ...

  2. 【转】Android用NDK和整套源码下编译JNI的不同

    原文网址:http://www.devdiv.com/android_ndk_jni_-blog-99-2101.html 前些天要写个jni程序,因为才几行代码,想着用ndk开发可能容易些,就先研究 ...

  3. Compiled Language vs Scripting Language

    Referrence: Blog Compiled Languages Example: C, C++, Java Source code needs to be compiled into bits ...

  4. JQuery 动画之 广告

    html页面: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head&g ...

  5. TCP和UDP的区别(转)

    TCP协议与UDP协议的区别    首先咱们弄清楚,TCP协议和UCP协议与TCP/IP协议的联系,很多人犯糊涂了,一直都是说TCP/IP协议与UDP协议的区别,我觉得这是没有从本质上弄清楚网络通信! ...

  6. Mac截屏快捷键总结

    Mac截屏快捷键总结 1)Command-Shift-3: 将整个屏幕拍下并保存到桌面. 2)Command-Shift-Control-3:     将整个屏幕拍下并保存到剪贴板(Clipboard ...

  7. jqGrid源代码分析(一)

    废话少说.先上grid.base.js 整体结构图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc3B5MTk4ODEyMDE=/font/5a6L5L2 ...

  8. 【Spark Core】任务运行机制和Task源代码浅析1

    引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向exe ...

  9. UIImageView圆角,自适应图片宽高比例,图片拉伸,缩放比例和图片缩微图

    /*      设置圆角,通过layer中的cornerRadius和masksToBounds即可.            自适应图片宽高比例.通过UIViewContentModeScaleAsp ...

  10. 定制Qt帮助系统

    楼主     版权声明 该文章原创于Qter开源社区(www.qter.org),作者yafeilinux,转载请注明出处! 导语        一个完善的应用程序应该提供尽可能丰富的帮助信息.在Qt ...