该文章转自:http://www.cnblogs.com/jobs/archive/2007/04/27/730255.html

我们谈一下实际的场景吧。我们在开发中,有如下场景

a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。

一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,多小则存在效率问题。而且做不到按超时的时间顺序处理。

这场景,使用DelayQueue最适合了。

DelayQueue是java.util.concurrent中提供的一个很有意思的类。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都没有提供Sample。我最初在阅读ScheduledThreadPoolExecutor源码时,发现DelayQueue的妙用。随后在实际工作中,应用在session超时管理,网络应答通讯协议的请求超时处理。

本文将会对DelayQueue做一个介绍,然后列举应用场景。并且提供一个Delayed接口的实现和Sample代码。

DelayQueue是一个BlockingQueue,其特化的参数是Delayed。(不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)
Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用PriorityQueue实现的。

DelayQueue = BlockingQueue + PriorityQueue + Delayed

DelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。

他们的基本定义如下

public interface Comparable<T> {
public int compareTo(T o);
}
public interface Delayed extends Comparable<Delayed> {
long getDelay(TimeUnit unit);
}

  

public class DelayQueue<E extends Delayed> implements BlockingQueue<E> {
private final PriorityQueue<E> q = new PriorityQueue<E>();
}

DelayQueue内部的实现使用了一个优先队列。当调用DelayQueue的offer方法时,把Delayed对象加入到优先队列q中。如下:

 public boolean offer(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E first = q.peek();
q.offer(e);
if (first == null || e.compareTo(first) < 0)
available.signalAll();
return true;
} finally {
lock.unlock();
}
}

DelayQueue的take方法,把优先队列q的first拿出来(peek),如果没有达到延时阀值,则进行await处理。如下:

 public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
E first = q.peek();
if (first == null) {
available.await();
} else {
long delay = first.getDelay(TimeUnit.NANOSECONDS);
if (delay > 0) {
long tl = available.awaitNanos(delay);
} else {
E x = q.poll();
assert x != null;
if (q.size() != 0)
available.signalAll(); // wake up other takers
return x; }
}
}
} finally {
lock.unlock();
}
}

以下是Sample,是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:

 public class Pair<K, V> {
public K first; public V second; public Pair() {} public Pair(K first, V second) {
this.first = first;
this.second = second;
}
}

以下是Delayed的实现

 import java.util.concurrent.Delayed;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong; public class DelayItem<T> implements Delayed {
/** Base of nanosecond timings, to avoid wrapping */
private static final long NANO_ORIGIN = System.nanoTime(); /**
* Returns nanosecond time offset by origin
*/
final static long now() {
return System.nanoTime() - NANO_ORIGIN;
} /**
* Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied
* entries.
*/
private static final AtomicLong sequencer = new AtomicLong(0); /** Sequence number to break ties FIFO */
private final long sequenceNumber; /** The time the task is enabled to execute in nanoTime units */
private final long time; private final T item; public DelayItem(T submit, long timeout) {
this.time = now() + timeout;
this.item = submit;
this.sequenceNumber = sequencer.getAndIncrement();
} public T getItem() {
return this.item;
} public long getDelay(TimeUnit unit) {
long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
return d;
} public int compareTo(Delayed other) {
if (other == this) // compare zero ONLY if same object
return 0;
if (other instanceof DelayItem) {
DelayItem x = (DelayItem) other;
long diff = time - x.time;
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
else if (sequenceNumber < x.sequenceNumber)
return -1;
else
return 1;
}
long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));
return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
}
}

以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。

 import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger; public class Cache<K, V> {
private static final Logger LOG = Logger.getLogger(Cache.class.getName()); private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>(); private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>(); private Thread daemonThread; public Cache() { Runnable daemonTask = new Runnable() {
public void run() {
daemonCheck();
}
}; daemonThread = new Thread(daemonTask);
daemonThread.setDaemon(true);
daemonThread.setName("Cache Daemon");
daemonThread.start();
} private void daemonCheck() { if (LOG.isLoggable(Level.INFO))
LOG.info("cache service started."); for (;;) {
try {
DelayItem<Pair<K, V>> delayItem = q.take();
if (delayItem != null) {
// 超时对象处理
Pair<K, V> pair = delayItem.getItem();
cacheObjMap.remove(pair.first, pair.second); // compare and remove
}
} catch (InterruptedException e) {
if (LOG.isLoggable(Level.SEVERE))
LOG.log(Level.SEVERE, e.getMessage(), e);
break;
}
} if (LOG.isLoggable(Level.INFO))
LOG.info("cache service stopped.");
} // 添加缓存对象
public void put(K key, V value, long time, TimeUnit unit) {
V oldValue = cacheObjMap.put(key, value);
if (oldValue != null)
q.remove(key); long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);
q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime));
} public V get(K key) {
return cacheObjMap.get(key);
} // 测试入口函数
public static void main(String[] args) throws Exception {
Cache<Integer, String> cache = new Cache<Integer, String>();
cache.put(1, "aaaa", 3, TimeUnit.SECONDS); Thread.sleep(1000 * 2);
{
String str = cache.get(1);
System.out.println(str);
} Thread.sleep(1000 * 2);
{
String str = cache.get(1);
System.out.println(str);
}
}
}

运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。

《转》精巧好用的DelayQueue的更多相关文章

  1. 精巧好用的DelayQueue

    我们谈一下实际的场景吧.我们在开发中,有如下场景 a) 关闭空闲连接.服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之.b) 缓存.缓存中的对象,超过了空闲时间,需要从缓存中移出.c) 任务超 ...

  2. 精巧好用的DelayQueue 转

    我们谈一下实际的场景吧.我们在开发中,有如下场景 a) 关闭空闲连接.服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之.b) 缓存.缓存中的对象,超过了空闲时间,需要从缓存中移出.c) 任务超 ...

  3. 20150817---成长日记1---DelayQueue&&Delayed&&Other

    今天第一次接触DelayQueue,源于项目中的话单解析入库的拆分线程中引入,首先简单了解一下DelayQueue: DelayQueue是一个无界阻塞队列,只有在延迟期满时才能从中提取元素.该队列的 ...

  4. 🏆【Java技术专区】「延时队列专题」教你如何使用【精巧好用】的DelayQueue

    延时队列前提 定时关闭空闲连接:服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之. 定时清除额外缓存:缓存中的对象,超过了空闲时间,需要从缓存中移出. 实现任务超时处理:在网络协议滑动窗口请求 ...

  5. 延时队列:Java中的DelayQueue

    Java中的DelayQueue位于java.util.concurrent包下,本质是由PriorityQueue和BlockingQueue实现的阻塞优先级队列. 放入队列的元素需要实现java. ...

  6. Java多线程系列- DelayQueue延时队列

    我们在开发中,有如下场景 a) 关闭空闲连接.服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之.b) 缓存.缓存中的对象,超过了空闲时间,需要从缓存中移出.c) 任务超时处理.在网络协议滑动窗 ...

  7. Java并发之BlockingQueue 阻塞队列(ArrayBlockingQueue、LinkedBlockingQueue、DelayQueue、PriorityBlockingQueue、SynchronousQueue)

    package com.thread.test.thread; import java.util.Random; import java.util.concurrent.*; /** * Create ...

  8. 10 DelayQueue 延时队列类——Live555源码阅读(一)基本组件类

    这是Live555源码阅读的第一部分,包括了时间类,延时队列类,处理程序描述类,哈希表类这四个大类. 本文由乌合之众 lym瞎编,欢迎转载 www.cnblogs.com/oloroso/ 本文由乌合 ...

  9. DelayQueue

    1.结构 使用的是PriorityQueue来作为底层的存储 元素需要实现Delayed接口,该接口继承了comparable接口 DelayQueue的队头元素是根据comparable排在队首的元 ...

随机推荐

  1. 阿里大鱼短信接口整合Tp3.2.3开发整理

    阿里大鱼 http://www.alidayu.com/ 的短信接口总体是不错的,别安驹个人认为不管是从性价比还是稳定性上都是跟同类的短信接口好些,毕竟是大公司的东西不会差到哪去.下面把之前开发的短信 ...

  2. Hql参数占位符使用(转+整理)

    在Hibernate 4版本中,对于Hql有一点点改变,如果你还是按照以前的方式去编写HQL Query query = sessionFactory.openSession().createQuer ...

  3. python基础之python中if __name__ == '__main__': 的解析

    当你打开一个.py文件时,经常会在代码的最下面看到if __name__ == '__main__':,现在就来介 绍一下它的作用. 模块是对象,并且所有的模块都有一个内置属性 __name__.一个 ...

  4. C++中数字与字符串之间的转换,别人的,

    C++中数字与字符串之间的转换   1.字符串数字之间的转换 (1)string --> char *   string str("OK");   char * p = st ...

  5. sql的集合运算

    表的加减法 union:使用union 对表进行假发(并集)运算, union等集合运算符通常都会去除重复记录. select shohin_id, shohin_mei from shohin un ...

  6. Android动画之硬件加速

    你的动画写出来卡嘛?流畅嘛 如果你想提升动画的性能,那就是用它-hardware layers. During animations your views may be redrawn each fr ...

  7. Redis解决强制关闭Redis快照导致不能持久化错误

    今天在使用composer添加Redis缓存的时候,运行Redis发生错误: 127.0.0.1:6379> set dachou dadachou (error) MISCONF Redis ...

  8. Nlog、elasticsearch、Kibana以及logstash

    Nlog.elasticsearch.Kibana以及logstash 前言 最近在做文档管理中,需要记录每个管理员以及用户在使用过程中的所有操作记录,本来是通过EF直接将操作数据记录在数据库中,在查 ...

  9. 论山寨手机与Android联姻 【2】手机OS成为核心

    手机凭借通话和短信这两项基本功能,积累了用户,开拓了市场.但是用户的需求是永无止境的,对于手机制造商来说,紧跟用户需求,拓展手机功能,是机会也是挑战. 1988年第一款数码相机,在日本上市.数码相机的 ...

  10. GDI+简单现实文字旋转

    原文 http://www.cnblogs.com/kaixiangbb/p/3301272.html 题记 入职新公司已快有两月了,试用期已快结束,项目却迟迟还未正式启动.安排给我的多是些琐事,一直 ...