Description

Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。 考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。


Input

第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。

Output

* 第一行:一个值,表示最小的不方便值。

题解:

依然BZOJ图片看不了。。。

常规的树形dp,两次dp的思想。

第一次dp,求出每个点孩子对答案的贡献。

第二次dp,求出每个点父亲对答案的贡献。

end。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
//by zrt
//problem:
using namespace std;
int H[100005],X[200005],P[200005],E[200005];
int tot;
inline void add(int x,int y,int z){
P[++tot]=y;X[tot]=H[x];H[x]=tot;E[tot]=z;
}
int c[100005];
int n;
typedef long long LL;
LL ans[100005];
LL sum[100005],num[100005]; void dp1(int x,int fa){
num[x]=c[x];
sum[x]=0;
for(int i=H[x];i;i=X[i]){
if(P[i]==fa) continue;
dp1(P[i],x);
num[x]+=num[P[i]];
sum[x]+=sum[P[i]]+num[P[i]]*E[i];
}
}
LL SUM;
void dp2(int x,int fa,int edge){
if(!fa) ans[x]=sum[x];
else ans[x]=ans[fa]-num[x]*edge+(SUM-num[x])*edge;
for(int i=H[x];i;i=X[i]){
if(fa==P[i]) continue;
dp2(P[i],x,E[i]);
}
}
int main(){
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&c[i]),SUM+=c[i];
for(int i=1,x,y,z;i<n;i++){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dp1(1,0);
dp2(1,0,0);
LL minn=1LL<<50;
for(int i=1;i<=n;i++) minn=min(minn,ans[i]);
printf("%lld\n",minn);
return 0;
}

BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会的更多相关文章

  1. 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会

    1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 793  Solved: 354[Sub ...

  2. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )

    选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...

  3. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP

    [Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...

  4. BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP + 带权重心

    Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...

  5. BZOJ 1827 [Usaco2010 Mar]gather 奶牛大集会(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1827 [题目大意] 给出一棵有点权和边权的树, 请确定一个点,使得每个点到这个点的距离 ...

  6. bzoj 1827: [Usaco2010 Mar]gather 奶牛大集会【树形dp】

    不能用read会TLE!!不能用read会TLE!!不能用read会TLE!! 一开始以为要维护每个点,线段树写了好长(还T了-- 首先dfs一遍,求出点1为集会地点的答案,处理处val[u]为以1为 ...

  7. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会(树形dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1827 仔细想想就好了,, 每个点维护两个值,一个是子树的费用,一个是除了子树和自己的费用.都可以用d ...

  8. 【BZOJ】1827: [Usaco2010 Mar]gather 奶牛大集会

    [算法]树型DP||树的重心(贪心) [题解] 两遍DFS,第一次得到所有节点子树的路径和,第二次给出除了该子树外其它部分的路径和,时时计算答案. long long!!! #include<c ...

  9. 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP

    [BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...

随机推荐

  1. iOS数据处理之SQLite数据库

    1. 数据库管理系统 1> SQL语言概述 SQL: SQL是Structured Query Language(结构化查询语言)的缩写.SQL是专为数据库而建立的操作命令集, 是一种功能齐全的 ...

  2. Vim常见快捷键汇总

    编辑命令: i 词前插入 a 词后插入 I 行首插入 A 行尾插入 o 新建一行编辑 O 在上面新建一行 插入: 10 i * [ESC] 插入10个* 25 a xx [ESC] 插入25个xx J ...

  3. (转)我所理解的OOP——UML六种关系

    原文地址:http://www.cnblogs.com/dolphinX/p/3296681.html 最近由于经常给公司的小伙伴儿们讲一些OOP的基本东西,每次草纸都被我弄的很尴尬,画来画去自己都乱 ...

  4. JAVA的instanceOf什么时候用啊

    当你拿到一个对象的引用时(例如参数),你可能需要判断这个引用真正指向的类.所以你需要从该类继承树的最底层开始, 使用instanceof操作符判断,第一个结果为true的类即为引用真正指向的类. cl ...

  5. Velocity 入门(一)

    Velocity是一种Java模版引擎技术,该项目由Apache提出.因为非常好用,和工作中有啥用,所以我在在理简单的入门一下. 网上找了很多教程,写的不是很明白,要么就是全部拷贝下来时候运行不起来. ...

  6. php有三种工作模式

    php有三种工作模式. 其中是最常见的是php作为一个模块工作在一个多进程的webserver中, 例如apache webserver. apache会启动一个主进程, 多个子进程(php). 主进 ...

  7. Windows 7中,用Visual Studio开发WPF应用程序,实现从Windows Explorer中拖拽文件到应用程序,始终显示“无法拖放”符号问题解决方案

    Are you running your application or Visual Studio that hosts the app under administrative privilege? ...

  8. WEB开发时Browser控件得到C:\fakepath\ 的解决方式

    IE9中JS获得文件上传控件的路径不对,为:C:\fakepath\ 原来要修改:  工具 -> Internet选项 -> 安全 -> 自定义级别 -> 将本地文件上载至服务 ...

  9. linux命令之解压与压缩

    解压 tar –xvf file.tar //解压 tar包 tar -xzvf file.tar.gz //解压tar.gz tar -xjvf file.tar.bz2 //解压 tar.bz2 ...

  10. ubuntu下怎么合并windows下分割的zip包

    cat ziptest.z* > google_bak.zip 点击打开链接http://blog.51yip.com/linux/988.html