[转]Python中的矩阵转置
Python中的矩阵转置 via
需求:
你需要转置一个二维数组,将行列互换.
讨论:
你需要确保该数组的行列数都是相同的.比如:
arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
列表递推式提供了一个简便的矩阵转置的方法:
print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
另一个更快和高级一些的方法,可以使用zip函数:
print map(list, zip(*arr))
本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦.
有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别. Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速.
在列表递推式版本中,内层递推式表示选则什么(行),外层递推式表示选择者(列).这个过程完成后就实现了转置.
在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为list, 所以我们可以我们可以使用itertools.izip来稍微的提高效率(因为izip并没有将数据在内存中组织为列表).
import itertools
print map(list, itertools.izip(*arr))
但是,在特定的情况下,上面的方法对效率的微弱提升不能弥补对复杂度的增加.
关于*args和**kwds语法:
args(实际上,号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定,并保留所有的位置信息, 而不是具体的变量.当你使用这个方法传递参数时,变量可以是任意的可迭代对象(其实可以是任何表达式,只要返回值是迭代器).
**kwds语法在Python中用于接收命名参数.当你用这个方式传递参数时,Python将变量和一个dict绑定,保留所有命名参数,而不是具体的变量值.当你传递参数时,变量必须是dict类型(或者是返回值为dict类型的表达式).
如果你要转置很大的数组,使用Numeric Python或其它第三方包,它们定义了很多方法,足够让你头晕的.
相关说明:
zip(...)
zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)]
Return a list of tuples, where each tuple contains the i-th element
from each of the argument sequences. The returned list is truncated
in length to the length of the shortest argument sequence.
[转]Python中的矩阵转置的更多相关文章
- python中的矩阵、多维数组----numpy
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html (numpy官网一些教程) numpy教程:数组创建 python中的矩阵.多维数 ...
- 关于python中的矩阵乘法(array和mat类型)
关于python中的矩阵乘法,我们一般有两种数据格式可以实现:np.array()类型和np.mat()类型: 对于这两种数据类型均有三种操作方式: (1)乘号 * (2)np.dot() (3)np ...
- Python中的矩阵、多维数组:Numpy
Numpy 是Python中科学计算的核心库.它提供一个高性能多维数据对象,以及操作这个对象的工具.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对 ...
- python中的矩阵、多维数组
2. 创建一般的多维数组 import numpy as np a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3]) type(a ...
- 2.python中的矩阵、多维数组----numpy
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得 ...
- Python中的矩阵操作
Numpy 通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包. NumPy 是一个非常优秀的提供矩阵操作的包.N ...
- Python中对矩阵的洗牌操作
[code] import numpy as np # 创建随机交换的索引 permutation = list(np.random.permutation(3)) # 创建矩阵X,Y X = np. ...
- 42-python中的矩阵、多维数组----numpy
xzcfightingup python中的矩阵.多维数组----numpy 1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易, ...
- 结合scipy.linalg在Python中使用线性系统
摘要:将线性代数概念应用到实际问题中scipy.linalg 使用 Python 和 NumPy处理向量和矩阵 使用线性系统模拟实际问题 使用求解线性系统 scipy.linalg 本文分享自华为云社 ...
随机推荐
- easyui valid
/** * 包含easyui的扩展和常用的方法 * * @author * * @version 20120806 */ var wjc = $.extend({}, wjc);/* 定义全局对象,类 ...
- HDU3746 Cyclic Nacklace 【KMP】
Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- RPC框架之Thrift
目前流行的服务调用方式有很多种,例如基于SOAP消息格式的 Web Service,基于 JSON 消息格式的 RESTful 服务等.其中所用到的数据传输方式包括 XML,JSON 等,然而 XML ...
- JS调用ashx文件传递中文参数取不到值的解决方案
引自:http://www.cnblogs.com/yinpeng186/archive/2011/09/30/2196726.html
- Bootstrap教程
Bootstrap 教程 Bootstrap 教程
- Struts1和Struts2的区别和对比(完整版)
Struts2其实并不是一个陌生的Web框架,Struts2是以Webwork的设计思想为核心,吸收了Struts1的优点,因此,可以认为Struts2是Struts1和Webwork结合的产物. 简 ...
- 初识Angular2
Angular2是面向未来的科技,要求浏览器支持ES6+,我们现在要尝试的话,需要加一些 垫片来抹平当前浏览器与ES6的差异: angular2-polyfills - 为ES5浏览器提供ES6特性支 ...
- FFT —— 快速傅里叶变换
问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...
- 暑假集训(1)第一弹 -----士兵队列训练问题(Hdu1276)
Description 某部队进行新兵队列训练,将新兵从一开始按顺序依次编号,并排成一行横队,训练的规则如下:从头开始一至二报数,凡报到二的出列,剩下的向小序号方向靠拢,再从头开始进行一至三报数,凡报 ...
- 彻底理解Gradle的任务
这是从我个人博客中复制过来的,没有重新进行排版,为了更好的阅读效果大家可以去我网站上阅读,地址:http://coolshell.info/blog/2015/07/gradle-tasks-guid ...