描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1005

一棵树有n个点,给出没给节点的度,如果没有限制则为-1,求共有多少种可能的树.

分析


蒟蒻我肯定是不会做的,所以先来抄一段题解...


这题需要了解一种数列: Purfer Sequence

我们知道,一棵树可以用括号序列来表示,但是,一棵顶点标号(1~n)的树,还可以用一个叫做 Purfer Sequence 的数列表示

一个含有 n 个节点的 Purfer Sequence 有 n-2 个数,Purfer Sequence 中的每个数是 1~n 中的一个数

一个定理:一个 Purfer Sequence 和一棵树一一对应

先看看怎么由一个树得到 Purfer Sequence

由 一棵树得到它的 Purfer Sequence 总共需要 n-2 步,每一步都在当前的树中寻找具有最小标号的叶子节点(度为 1),将与其相连的点的标号设为 Purfer Sequence 的第 i 个元素,并将此叶子节点从树中删除,直到最后得到一个长度为 n-2 的 Purfer Sequence 和一个只有两个节点的树

看看下面的例子:

假设有一颗树有 5 个节点,四条边依次为:(1, 2), (1, 3), (2, 4), (2, 5),如下图所示:

第 1 步,选取具有最小标号的叶子节点 3,将与它相连的点 1 作为第 1 个 Purfer Number,并从树中删掉节点 3:

第 2 步,选取最小标号的叶子节点 1,将与其相连的点 2 作为第 2 个 Purfer Number,并从树中删掉点 1:

第 3 步,选取最小标号的叶子节点 4,将与其相连的点 2 作为第 3 个 Purfer Number,并从树中删掉点 4:

最后,我们得到的 Purfer Sequence 为:1 2 2

不难看出,上面的步骤得到的 Purfer Sequence 具有唯一性,也就是说,一个树,只能得到一个唯一的 Purfer Sequence

接下来看,怎么由一个 Purfer Sequence 得到一个树

由 Purfer Sequence 得到一棵树,先将所有编号为 1 到 n 的点的度赋初值为 1,然后加上它在 Purfer Sequence 中出现的次数,得到每个点的度

先执行 n-2 步,每一步,选取具有最小标号的度为 1 的点 u 与 Purfer Sequence 中的第 i 个数 v 表示的顶点相连,得到树中的一条边,并将 u 和 v 的度减一

最后再把剩下的两个度为 1 的点连边,加入到树中

我们可以根据上面的例子得到的 Purfer Sequence :1 2 2 重新得到一棵树

Purfer Sequence 中共有 3 个数,可以知道,它表示的树中共有 5 个点,按照上面的方法计算他们的度为下表所示:

顶点 1 2 3 4 5
2 3 1 1 1

第 1 次执行,选取最小标号度为 1 的点 3 和 Purfer Sequence 中的第 1 个数 1 连边:

将 1 和 3 的度分别减一:

顶点 1 2 3 4 5
1 3 0 1 1

第 2 次执行,选取最小标号度为 1 的点 1 和 Purfer Sequence 中的第 2 个数 2 连边:

将 1 和 2 的度分别减一:

顶点 1 2 3 4 5
0 2 0 1 1

第 3 次执行,将最小标号度为 1 的点 4 和 Purfer Sequence 第 3 个数 2 连边:

将 2 和 4 的度分别减一:

顶点 1 2 3 4 5
0 1 0 0 1

最后,还剩下两个点 2 和 5 的度为 1,连边:

至此,一个 Purfer Sequence 得到的树画出来了,由上面的步骤可知,Purfer Sequence 和一个树唯一对应

综上,一个 Purfer Sequence 和一棵树一一对应

那么其数只要求出来合法的purfer sequence的数量就是生成树的数量。

将树转化为prufer编码:

n为树的节点数,d[i]为各节点的度数,(注意计算tot的时候只计算d[i]!=-1的数)m为无限制度数的节点数。

则            
所以要求在n-2大小的数组中插入tot各序号,共有种插法;
在tot各序号排列中,插第一个节点的方法有种插法; 
 插第二个节点的方法有种插法;………
另外还有m各节点无度数限制,所以它们可任意排列在剩余的n-2-tot的空间中,排列方法总数为
 
根据乘法原理:
 
 
然后就要高精度了…..但高精度除法太麻烦了,显而易见的排列组合一定是整数,所以可以进行质因数分解,再做一下相加减。

基本上知道什么是purfer_sequence这道题就没问题了.然后就是组合数学的推导.由于要用高精度,除法不太方便,我是直接暴力分解因数,然后坐指数相加减...最后来一发快速幂.

p.s.

1.按理来说应该要特判无解的情况,但是没有特判也A了...

  1. #include <bits/stdc++.h>
  2. using namespace std;
  3.  
  4. const int maxn=+,maxl=,base=;
  5. int n,cnt,sum;
  6. int s[maxn],c[maxn];
  7. typedef long long ll;
  8.  
  9. struct Bign{
  10. int cnt; ll x[maxl];
  11. Bign(int t=){
  12. memset(x,,sizeof x);
  13. x[cnt=]=t;
  14. }
  15. ll & operator [](int id){ return x[id]; }
  16. }ans();
  17. Bign operator *= (Bign &x,Bign &y){
  18. Bign z;
  19. for(int i=;i<=x.cnt;i++)for(int j=;j<=y.cnt;j++)
  20. z[i+j-]+=x[i]*y[j], z[i+j]+=z[i+j-]/base, z[i+j-]%=base;
  21. z.cnt=x.cnt+y.cnt;
  22. if(!z[z.cnt]) z.cnt--;
  23. x=z;
  24. }
  25. ostream & operator << (ostream &out,Bign &x){
  26. printf("%lld",x[x.cnt]);
  27. for(int i=x.cnt-;i;i--) printf("%08lld",x[i]);
  28. return out;
  29. }
  30. void decomposition(int x,int y){
  31. for(int i=;i*i<=x;i++)while(x%i==) c[i]+=y, x/=i;
  32. if(x^) c[x]+=y;
  33. }
  34. void quick_power(int i,int y){
  35. Bign x(i);
  36. for(;y;x*=x, y>>=) if(y&) ans*=x;
  37. }
  38. int main(){
  39. freopen("bzoj_1005.in","r",stdin);
  40. freopen("bzoj_1005.out","w",stdout);
  41. scanf("%d",&n);
  42. for(int i=;i<=n;i++){
  43. int t; scanf("%d",&t);
  44. if(t>) s[++cnt]=t-, sum+=t-;
  45. }
  46. for(int i=;i<=n-;i++) decomposition(i,);
  47. for(int i=;i<=cnt;i++)for(int j=;j<=s[i];j++) decomposition(j,-);
  48. for(int i=;i<=n--sum;i++) decomposition(i,-);
  49. decomposition(n-cnt,n--sum);
  50. for(int i=;i<=n;i++)if(c[i]) quick_power(i,c[i]);
  51. cout<<ans<<endl;
  52. return ;
  53. }

1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3980  Solved: 1583
[Submit][Status][Discuss]

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

Source

BZOJ_1005_ [HNOI2008]_明明的烦恼_(组合数学+purfer_sequence+高精度+分解因数+快速幂)的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. 【BZOJ】【1005】【HNOI2008】明明的烦恼

    Prufer序列/排列组合+高精度 窝不会告诉你我是先做了BZOJ1211然后才来做这题的>_>(为什么?因为我以前不会高精度呀……) 在A了BZOJ 1211和1089之后,蒟蒻终于有信 ...

  3. 【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4981  Solved: 1941 Description ...

  4. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  5. 【BZOJ1005】【HNOI2008】明明的烦恼

    又是看黄学长的代码写的,估计我的整个BZOJ平推计划都要看黄学长的代码写 原题: 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连 ...

  6. [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...

  7. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  8. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  9. BZOJ_1008_[HNOI2008]_越狱_(简单组合数学+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1008 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰 ...

随机推荐

  1. javascript学习笔记20160121-css选择器

    元素可以用id.标签名或类来描述: 更一般的,元素可以基于属性来选取: 这些基本的选择器可以组合使用: 选择器可以指定文档结构(重要,之前一直不太明白>的使用): 选择器可以组合起来选取多个或多 ...

  2. 请求与通配符 mime 映射相匹配。请求映射到静态文件处理程序。如果有不同的前提条件,请求将映射到另一个处理程序。

    打开IIS管理器,找到“处理程序映射”,在列表右击选择“添加脚本映射”即可.eg:*.aspx,将该类型的页面的处理程序映射为“%windir%\Microsoft.NET\Framework\v4. ...

  3. JavaScript中的运算符种类及其规则介绍

    JavaScript中的运算符有很多,主要分为算术运算符,等同全同运算符,比较运算符,字符串运算符,逻辑运算符,赋值运算符等.这些运算符都有一些属于自己的运算规则,下面就为大家介绍一下JavaScri ...

  4. mysql存储过程讲解

    1.数据库存储过程:简单滴说,存储过程就是存储在数据库中的一个程序. 2..数据库存储过程作用: 第一:存储过程因为SQL语句已经预编绎过了,因此运行的速度比较快. 第二:存储过程可以接受参数.输出参 ...

  5. 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

    Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...

  6. Python 列表实现字典的get功能

    字典有一个很好用的方法,就是get,既可以预防KeyError异常,也可以为不存在的key设置一个默认的value 例如: v=d.get('k','default') 而列表没有一个类似的方法,如果 ...

  7. XSS传染基础——JavaScript中的opener、iframe

    最近研究XSS,根据etherDream大神的博客 延长XSS生命周期 写了一个子页面父页面相互修改的demo. 一. 子页面.父页面相互修改——window.opener.window.open 在 ...

  8. DOS下文件操作命令

    文件名是由文件路径和文件名称合起来的,如C:\DOS\COMMAND.COM. DIR 显示文件和文件夹(目录). 用法:DIR [文件名] [选项] 它有很多选项,如/A表示显示所有文件(即包括带隐 ...

  9. C#操作mongodb数据库

    1.下载驱动: 如下图:选择c#解决方案,右键,点击 “管理NuGet程序包(N)...” 在弹出的对话框中,输入MongoDB.Driver,进行搜索,然后选择安装. 2.引用命名空间: using ...

  10. Jquer学习

    1:什么是Jquery 2:jquery的例子 3:后记