Show that the following statements are equivalent:

(1). $A$ is positive.

(2). $A=B^*B$ for some $B$.

(3). $A=T^*T$ for some upper triangular $T$.

(4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive definite, then the factorization in (4) is unique. This is called the Cholesky decomposition of $A$.

Solution.  (1)$\ra$(2). Since $A$ is positive, and thus is Hermitian, $\exists$ unitary $Q$, $\st$ $$\bex A=Q\diag(\lm_1,\cdots,\lm_n)Q^*,\quad \lm_i\geq 0. \eex$$ Take $$\bex B=\diag\sex{\sqrt{\lm_1},\cdots,\sqrt{\lm_n}}Q, \eex$$ then $A=B^*B$.

(2)$\ra$(4). By QR decomposition, $\exists$ orthogonal $Q$, upper triangular $R$ with diagonals $\geq0$, $\st B=QR$. Thus $$\bex A=B^*B=R^*Q^*QR=R^*R. \eex$$

(4)$\ra$(1). First, $A$ is Hermitian. Second, $$\bex x^*Ax=x^*T^*Tx=\sen{Tx}^2\geq 0,\quad \forall\ x. \eex$$

(3)$\ra$(1). Just do as that in (4)$\ra$(1).

(1)$\ra$(3). Just use the QR decomposition.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. AJAX安全-Session做Token

    个人思路,请大神看到了指点 个人理解token是防止扫号机或者恶意注册.恶意发表灌水,有些JS写的token算法,也会被抓出来被利用,个人感觉还是用会过期的Session做token更好,服务器存储, ...

  2. KISSY学习笔记(更新中)

    序:身为一个JAVA开发工程师,前端代码我尽量是使用原生的JS来写的,或是使用一些JQ的开源组件(但是也只是使用,没有好好去研究过JQ这个框架).目前由于工作需要,必须要使用KISSY,打算借此机会, ...

  3. 推荐一个优秀的前端框架——Bootstrap

    Bootstrap是Twitter推出的一个开源的用于前端开发的工具包.它由Twitter的设计师Mark Otto和Jacob Thornton合作开发,是一个CSS/HTML框架.Bootstra ...

  4. 修改VC++2010界面左上角图标

    (1)在Resource View中创建或者插入一个新的Icon资源,用于你想要的程序图标,假设ID号为IDI_ICON(这种图标要有16*16和32*32两种格式的,前者用于最小化和列表显示等,后者 ...

  5. 将TIBCO Host 实例注册为Windows服务

    安装了TIBCO ActiveMatrix BPM及成功创建了ActiveMatrix Administrator 和 BPM Server后,每次都要手动启动tibcohost,比较麻烦,实际上TI ...

  6. python使用psutil获取服务器信息

    >>> import psutil 获取cpu信息>>> psutil.cpu_times()scputimes(user=128258.38, nice=12.2 ...

  7. IIS修改队列长度

    Internet Information Services (IIS) 限制了在任何给定时间可在队列中等待的应用程序池请求的最大数量.如果达到此限制,则所有新请求都将被拒绝,而且用户将收到错误消息“5 ...

  8. JAVA 内存管理总结

    1. java是如何管理内存的 Java的内存管理就是对象的分配和释放问题.(两部分) 分配 :内存的分配是由程序完成的,程序员需要通过关键字new 为每个对象申请内存空间 (基本类型除外),所有的对 ...

  9. PHP完整环境搭建

    Linux(CentOS 7)+ Nginx(1.10.2)+ Mysql(5.7.16)+ PHP(7.0.12) 首先安装Linux系统,我以虚拟机安装来做示例,先去下载 VitualBox,这是 ...

  10. <一> MVC - HtmlHelper

    HtmlHelper类位于System.Web.Mvc.Html之中主要有七个静态类组成: FormExtensions - BeginForm, BeginRouteForm, EndForm In ...