[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2
Show that the following statements are equivalent:
(1). $A$ is positive.
(2). $A=B^*B$ for some $B$.
(3). $A=T^*T$ for some upper triangular $T$.
(4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive definite, then the factorization in (4) is unique. This is called the Cholesky decomposition of $A$.
Solution. (1)$\ra$(2). Since $A$ is positive, and thus is Hermitian, $\exists$ unitary $Q$, $\st$ $$\bex A=Q\diag(\lm_1,\cdots,\lm_n)Q^*,\quad \lm_i\geq 0. \eex$$ Take $$\bex B=\diag\sex{\sqrt{\lm_1},\cdots,\sqrt{\lm_n}}Q, \eex$$ then $A=B^*B$.
(2)$\ra$(4). By QR decomposition, $\exists$ orthogonal $Q$, upper triangular $R$ with diagonals $\geq0$, $\st B=QR$. Thus $$\bex A=B^*B=R^*Q^*QR=R^*R. \eex$$
(4)$\ra$(1). First, $A$ is Hermitian. Second, $$\bex x^*Ax=x^*T^*Tx=\sen{Tx}^2\geq 0,\quad \forall\ x. \eex$$
(3)$\ra$(1). Just do as that in (4)$\ra$(1).
(1)$\ra$(3). Just use the QR decomposition.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- php二维数组,按照指定的key,去排序value值
$arr = array( '11'=>array( 'a'=>1, 'b'=>2, ), '22'=>array( 'a'=>3, 'b'=>4, ), '33' ...
- Sublime Text 3的快捷键
Sublime Text 3是一个非常了不起的软件,它不仅具有令人难以置信的内置功能(多行编辑和VIM模式),而且还支持插件.代码片段和其它许多东西. 今天,我们来总结一下Sublime Text 3 ...
- Node.js和MongoDB - MongoJS入门
第一次尝试翻译外国牛人的博文,希望大家喜欢. 本文源码详见:https://github.com/njaulj/mongojs 一点都不夸大的说,近年来node.js和mongodb的确是大放异彩,在 ...
- CGAL 介绍
CGAL组织 内核 数值健壮 基础库 扩展性 2.4 命名约定 Naming In order to make it easier to remember what kind of entity a ...
- wpf image控件循环显示图片 以达到动画效果 问题及解决方案
1>最初方案: 用wpf的image控件循环显示图片,达到动画效果,其实就是在后台代码动态改变Image.Source的值,关键代码: ; i < ; i++)//六百张图片 { Bitm ...
- Java学习--封装、继承、多态
接下来几天会根据http://www.cnblogs.com/chenssy/category/525010.html中讲解的java内容做个学习笔记,在此感谢一下这位大仙!! 一.封装 对于封装而言 ...
- Word分栏
情景描述 Word分栏在小论文的撰写过程中是很常用的技术.但是,我们经常会遇到很难过的情况: 一段文字本来是连续分布的,可是当选择了分两栏 之后,开始部分在左边一栏,中间在右边一栏. ...
- Quartz Scheduler 开发指南(1)
Quartz Scheduler 开发指南(1) 原文地址:http://www.quartz-scheduler.org/generated/2.2.2/html/qtz-all/ 实例化调度程序( ...
- C# - 自动属性
使用自动属性时,只能通过属性访问数据,不能通过底层私有字段,因为我们不知道底层私有字段的名称,是编译期间定义的.所以也没法对字段赋值或取值进行校验或限制. 无法使用这种方式定义只读或只写属性.
- 移动前端javascript事件
移动端事件: // 手势事件 touchstart //当手指接触屏幕时触发 touchmove //当已经接触屏幕的手指开始移动后触发 touchend //当手指离开屏幕时触发 touchcanc ...