HDU 2553 n皇后问题(回溯法)
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
Output
Sample Input
8
5
0
Sample Output
92
10
按行向量递增搜索,一直到最后一个行向量结束时得到一种放置方法,用b[]保存摆法。
#include<stdio.h>
#include<cstring>
int vis[][];
int c[];
int cur,tot;
int n;
void search(int cur)
{
if(cur==n)
tot++;
else for(int i=; i<n; i++)
{
if(!vis[][i]&&!vis[][cur+i]&&!vis[][cur-i+n])
{
c[cur]=i;
vis[][i]=vis[][cur+i]=vis[][cur-i+n]=;
search(cur+);
vis[][i]=vis[][cur+i]=vis[][cur-i+n]=;
}
}
} int main()
{
int b[];
for(n=; n<=; n++)
{
memset(vis,,sizeof(vis));
tot=;
search();
b[n]=tot;
}
int bn;
while(scanf("%d",&bn)&&bn)
{
printf("%d\n",b[bn]);
}
return ;
}
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=;
int b[maxn],a[maxn],sum,n; void dfs(int cur)
{
if(cur == n+)//递归边界,就有一种摆法
sum++;
else
for(int j = ; j <=n; j++)
{
int ok=;
a[cur] = j;//尝试把第cur行的皇后放在第j列
for(int i = ; i<cur; i++) //检查是否和前面的皇后冲突
if(a[i] == a[cur] || abs(i - cur) == abs(a[i] - a[cur]))
{
ok=;
break;
}
if(ok)
dfs(cur+);//如果合法,继续递归
}
} int main()
{
for(int i = ; i <=maxn; i++)
{
sum = ;
n= i;
dfs();
b[i] = sum;
}
while(cin>>n && n)
cout<<b[n]<<endl;
return ;
}
#include <cstdio>
main()
{
int n,a[]={,,,,,,,,,,,,};
while(scanf("%d",&n))
printf("%d\n",a[n]);
}
HDU 2553 n皇后问题(回溯法)的更多相关文章
- [HDU 2553]--N皇后问题(回溯)/N皇后问题的分析
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2553 N皇后问题 Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 2553 N皇后问题(回溯 + 剪枝)
本文链接:http://i.cnblogs.com/EditPosts.aspx?postid=5398797 题意: 在N*N(N <= 10)的方格棋盘放置了N个皇后,使得它们不相互攻击(即 ...
- 八皇后问题-回溯法(MATLAB)
原创文章,转载请注明:八皇后问题-回溯法(MATLAB) By Lucio.Yang 1.问题描述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后,使其不能 ...
- 算法入门经典-第七章 例题7-4-1 拓展 n皇后问题 回溯法
实际上回溯法有暴力破解的意思在里面,解决一个问题,一路走到底,路无法通,返回寻找另 一条路. 回溯法可以解决很多的问题,如:N皇后问题和迷宫问题. 一.概念 回溯算法实际类似枚举的搜索尝试过程,主 ...
- HDU 1016 Prime Ring Problem (回溯法)
Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 2553 N皇后问题 (DFS_回溯)
Problem Description 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即随意2个皇后不同意处在同一排,同一列,也不同意处在与棋盘边框成45角的斜线上. 你的任务是.对于给定的N ...
- HDU 2553(N皇后)(DFS)
http://acm.hdu.edu.cn/showproblem.php?pid=2553 i表示行,map[i]表示列,然后用DFS遍历回溯 可以参考这篇文章: http://blog.csdn. ...
- hdu 2553 N皇后问题
回溯. 一个主对角线,副对角线的技巧 //vis[0][i]表示第i列有没有皇后 vis[1][cur+i]表示副对角线 vis[2][cur-i+n]表示主对角线 #include <cstd ...
- N皇后问题--回溯法
1.引子 中国有一句古话,叫做“不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每 ...
随机推荐
- 最小生成树 10.1.5.253 1505 poj 1258 http://poj.org/problem?id=1258
#include <iostream>// poj 1258 10.1.5.253 1505 using namespace std; #define N 105 // 顶点的最大个数 ( ...
- 外星人的供给站 (区间覆盖 t贪心)
/** 区间覆盖问题 分析: 每个点可以确定两个圆心 圆心的范围形成 一个区间 在这个区间上以任意一点画圆便可将此点 包含在内 如果有两个点所确定的区间相交了 说明这两个点可以用一个圆包含在内 即用一 ...
- hdu 4602 Partition 数学(组合-隔板法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4602 我们可以特判出n<= k的情况. 对于1<= k<n,我们可以等效为n个点排成 ...
- Java 中的泛型详解-Java编程思想
Java中的泛型参考了C++的模板,Java的界限是Java泛型的局限. 2.简单泛型 促成泛型出现最引人注目的一个原因就是为了创造容器类. 首先看一个只能持有单个对象的类,这个类可以明确指定其持有的 ...
- Android的adb命令使用以及在DOS的一系列操作
adb是什么?:adb的全称为Android Debug Bridge,就是起到调试桥的作用. adb有什么用?:借助adb工具,我们可以管理设备或手机模拟器的状态.还可以进行很多手机操作, ...
- Windows下Postgre SQL数据库通过Slony-I 实现数据库双机同步备份
一. 我们要实现的环境是windows xp.windows2003上安装Postgre SQL数据库,实现目的是两台数据库服务器进行数据库同步,即数据库同步更新.删除.插入等对数据库的操作. 二. ...
- CodeForces 55D Beautiful numbers(数位dp)
数位dp,三个状态,dp[i][j][k],i状态表示位数,j状态表示各个位上数的最小公倍数,k状态表示余数 其中j共有48种状态,最大的是2520,所以状态k最多有2520个状态. #include ...
- android中Canvas使用drawBitmap绘制图片
1.主要的绘制图片方法 //Bitmap:图片对象,left:偏移左边的位置,top: 偏移顶部的位置 drawBitmap(Bitmap bitmap, float left, float ...
- 关于Daydream VR的最直白的介绍
虚拟现实(Virtual Reality),简称虚拟技术,也称虚拟环境,是利用电脑模拟产生一个三度空间的虚拟世界,提供用户关于视觉等感官的模拟,让用户如同身历其境一般,电脑可以立即进行复杂的运算,将精 ...
- Python开发【第七篇】:面向对象 和 python面向对象进阶篇(下)
Python开发[第七篇]:面向对象 详见:<Python之路[第五篇]:面向对象及相关> python 面向对象(进阶篇) 上一篇<Python 面向对象(初级篇)> ...