题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数。显然gcd(n-a, n)<=n, gcd(n-b, n)<=n。因此当n不为1时,当k>2时,不存在满足条件的(a,b)。而当k=2时,仅存在(n, n)满足条件。因此仅剩n=1以及k=1需要单独讨论:
当n = 1时,无论k为何值,均有且仅有(1,1)满足条件,此时结果为1;
当k = 1时,即gcd(n-a, n)*gcd(n-b, n) = n,则令gcd(n-a, n) = i,则gcd(n-b, n) = n/i。也即求(n-a)/i与n/i互素且(n-b)/(n/i)与n/(n/i)互素的(a, b)的对数和。

 #include <cstdio>
#include <cmath> const int MOD = (1e9+); __int64 getNotDiv(int x) {
int i, r = x;
__int64 ret = x; for (i=; i*i<=r; ++i) {
if (x%i == ) {
ret -= ret/i;
while (x%i == )
x /= i;
}
}
if (x > )
ret -= ret/x;
return ret;
} int main() {
int n, k;
int i, j;
__int64 ans, tmp; while (scanf("%d %d", &n, &k) != EOF) {
if (n== || k==)
printf("1\n");
else if (k==) {
ans = ;
for (i=; i*i<=n; ++i) {
if (n%i == ) {
j = n/i;
tmp = getNotDiv(i)*getNotDiv(j)%MOD;
if (j == i) {
ans += tmp;
} else {
ans += tmp<<;
}
ans %= MOD;
}
}
printf("%I64d\n", ans%MOD);
} else {
printf("0\n");
}
} return ;
}

【HDOJ】4983 Goffi and GCD的更多相关文章

  1. 【HDOJ】4982 Goffi and Squary Partition

    题意就是整数划分,选出和为n的K个整数,其中K-1个数的和为完全平方数S.选择整数时需要从1,2,3..连续选择,当选择整数与n-S相等时,需要跳过n-S,即选择n-S+1.如此选择K-2个数,从而可 ...

  2. hdu 4983 Goffi and GCD(数论)

    题目链接:hdu 4983 Goffi and GCD 题目大意:求有多少对元组满足题目中的公式. 解题思路: n = 1或者k=2时:答案为1 k > 2时:答案为0(n≠1) k = 1时: ...

  3. HDU 4983 Goffi and GCD(数论)

    HDU 4983 Goffi and GCD 思路:数论题.假设k为2和n为1.那么仅仅可能1种.其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了.k = 1的时候,枚举n的因子 ...

  4. 【BZOJ】2820: YY的GCD

    [题意]给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对.T<=10^4,N,M<=10^7. [算法]数论(莫比乌 ...

  5. 【51NOD-0】1011 最大公约数GCD

    [算法]欧几里德算法 #include<cstdio> int gcd(int a,int b) {?a:gcd(b,a%b);} int main() { int a,b; scanf( ...

  6. 【数学】codeforces C. Maximal GCD

    http://codeforces.com/contest/803/problem/C [题意] 给定两个数n,k(1 ≤ n, k ≤ 10^10) 要你输出k个数,满足以下条件: ①这k个数之和等 ...

  7. 【HDOJ】3071 Gcd & Lcm game

    刚开始看这个题目,觉得没法做.关键点是数据小于100.因此,可以枚举所有小于100的素因子进行位压缩.gcd就是求最小值,lcm就是求最大值.c++有时候超时,g++800ms.线段树可解. /* 3 ...

  8. 【HDOJ】1695 GCD

    莫比乌斯反演简单题目. /* 1695 */ #include <iostream> #include <string> #include <map> #inclu ...

  9. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

随机推荐

  1. ashx一般处理程序文件用处

    今天逛博客园,无意发现一篇好文章,关于ashx文件的使用. 文章一:向服务器发送josn字符串,服务器端解析 本文转载:http://www.cnblogs.com/yzenet/p/3470388. ...

  2. php session_set_save_handler 函数的用法(mysql)(转)

    <?php /*============================文件说明======================================== @filename:     s ...

  3. Java对存储过程的调用方法 --转载

    一.Java如何实现对存储过程的调用: A:不带输出参数的 create procedure getsum <--此处为参数--> as declare @sum int<--定义变 ...

  4. [转] 深度解剖DIV+CSS工作原理

    本文和大家重点讨论一下DIV+CSS工作原理,在一般情况的DIV+CSS开发静态html网页时,我们把html和CSS是分开的,形成html页面和CSS文件. DIV+CSS原理解剖 在一般情况的DI ...

  5. python之Lambda函数---笔记

    <Python3 程序开发指南> Lambda函数,是一个匿名函数,创建语法: lambda parameters:express parameters:可选,如果提供,通常是逗号分隔的变 ...

  6. 简单图片banner轮播

    /**************[css]****************/   <style type="text/css">        *{margin:0px; ...

  7. 深入理解UITableView

    基本介绍 UITableView有两种风格:UITableViewStylePlain和UITableViewStyleGrouped.这两者操作起来其实并没有本质区别,只是后者按分组样式显示前者按照 ...

  8. java_annotation_02

    通过反射取得Annotation 在一上节中,我们只是简单的创建了Annotation,如果要让一个Annotation起作用,则必须结合反射机制,在Class类上存在以下几种于Annotation有 ...

  9. PHP PDO 简单登陆操作

    用PHP做出一个简单的登陆操作,确实很简单,下面就让我给大家简单的介绍一下PDO做出一个登陆界面操作的过程,因为也是初学乍练,不足之处请大家包涵. 首先,首先还要建一个表,在MySQL中建表,核心代码 ...

  10. 安装SVN及实现nginx web同步更新需要在WDCP一键安装包的基础上

    一.安装 1.查看是否安装cvs rpm -qa | grep subversion 2.安装 yum install subversion 3.测试是否安装成功 /usr/bin/svnserve ...