Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9851   Accepted: 3375

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

Source

也不是很难的题,套路一下 ,唯一就是求是否存在正环的时候,可以把边权取反,用spfa搞 。
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
const int N = + , M = + ;
#define inf 1000000000
using namespace std ;
int cnt , n , m , node[N] , head[N] , cs[N] ; double r ;
bool used[N] ; double dis[N] ;
struct id
{
int fro , to , nxt , val ; double w ;
} edge[M] ;
queue< int > Q ; void add( int u , int v , int c )
{
edge[++cnt].fro = u , edge[cnt].to = v ;
edge[cnt].val = c , edge[cnt].nxt = head[u] ; head[u] = cnt ;
} void Init( )
{
scanf( "%d%d" , &n , &m ) ;
for( int x = ; x <= n ; ++x )
{
scanf( "%d" , node + x ) ;
r += node[x] ;
}
int u , v , c ;
for( int x = ; x <= m ; ++x )
{
scanf( "%d%d%d" , &u , &v , &c ) ;
add( u , v , c ) ;
}
} bool spfa( double l )
{
while( !Q.empty( ) ) Q.pop( ) ;
for( int x = ; x <= n ; ++x ) dis[x] = inf ;
for( int x = ; x <= cnt ; ++x ) edge[x].w = edge[x].val * l - node[edge[x].fro] ;
memset( cs , , sizeof(cs) ) ;
memset( used , , sizeof( used ) ) ;
Q.push( ) ; dis[] = ; used[] = true ;
while( !Q.empty( ) )
{
int u = Q.front( ) ; Q.pop( ) ;used[u] = false ; ++cs[u] ;
if( cs[u] == n ) return ;
for( int i = head[u] ; i ; i = edge[i].nxt )
{
int v = edge[i].to ;
if( dis[v] >= dis[u] + edge[i].w )
{
dis[v] = dis[u] + edge[i].w ;
if( !used[v] ) used[v] = true , Q.push( v ) ;
} }
}
return false ;
} void Sovle( )
{
double l = ;
while( r - l > 1e- )
{
double mid = l + ( r - l ) / ;
if( spfa( mid ) ) l = mid ;
else r = mid ;
}
printf( "%.2f\n" , l ) ;
} int main( )
{
Init( ) ;
Sovle( ) ;
return ;
}

POJ 3621Sightseeing Cows的更多相关文章

  1. POJ 3621Sightseeing Cows 0/1 分数规划

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地 讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的 ...

  2. 树状数组 POJ 2481 Cows

    题目传送门 #include <cstdio> #include <cstring> #include <algorithm> using namespace st ...

  3. POJ 2481 Cows

    Cows Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16546   Accepted: 5531 Description ...

  4. 2018.07.08 POJ 2481 Cows(线段树)

    Cows Time Limit: 3000MS Memory Limit: 65536K Description Farmer John's cows have discovered that the ...

  5. POJ 2481 Cows (线段树)

    Cows 题目:http://poj.org/problem?id=2481 题意:有N头牛,每仅仅牛有一个值[S,E],假设对于牛i和牛j来说,它们的值满足以下的条件则证明牛i比牛j强壮:Si &l ...

  6. POJ 2481 Cows(树状数组)

                                                                      Cows Time Limit: 3000MS   Memory L ...

  7. POJ 3348 - Cows 凸包面积

    求凸包面积.求结果后不用加绝对值,这是BBS()排序决定的. //Ps 熟练了template <class T>之后用起来真心方便= = //POJ 3348 //凸包面积 //1A 2 ...

  8. POJ 2186-Popular Cows (图论-强联通分量Korasaju算法)

    题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认 ...

  9. POJ 2481 Cows (数组数组求逆序对)

    题目链接:http://poj.org/problem?id=2481 给你n个区间,让你求每个区间被真包含的区间个数有多少,注意是真包含,所以要是两个区间的x y都相同就算0.(类似poj3067, ...

随机推荐

  1. mysql中实现行号,oracle中的rowid

    mysql中实现行号需要用到MYSQL的变量,因为MySql木有rownumber. MYSQL中变量定义可以用 set @var=0 或 set @var:=0 可以用=或:=都可以,但是如果变量用 ...

  2. Javascript实现打字效果

    伤感的 学期末 今天是这学期的最后一天,考完了最后一门数学,明天我们就要各自为自己的暑假打算打算了,所以趁着大家还没走一起出去打了打篮球,玩了玩轮滑,很累但是很开心,最大的感触莫过于忧伤额,明年我或许 ...

  3. POJ2222+暴力搜索

    一共2^15个状态 比较简单 /* 2^15 states */ #include<stdio.h> #include<string.h> #include<stdlib ...

  4. 告别山寨数据线:USB Type-C加密认证出炉

    从去年苹果发布的MacBook首次采用USB Type-C接口开始,这一标准逐渐成为主流,许多旗舰手机慢慢地采用了这种接口.今日,非盈利机构USB开发者论坛(USB-IF)宣布了USB Type-C认 ...

  5. python还不能作为主要编程语言的原因:

    1.不太熟悉,容易犯新手错误,2.调试方法不同3.写了一个函数,是否语法正确,不能知道,只有具体调用它的时候才知道4.编辑器太业余,没有输入联想功能5.要查找一个函数或变量在哪里定义的,只能通过搜索的 ...

  6. FastJSON学习

    这几天在用FastJSON,发现需要测试一些关键点,包括: 1.是否支持内部类:测试结果是支持,但是需要设置为静态类(static) 2.是否支持继承的自动序列化及反序列化:测试结果是支持 3.缺字段 ...

  7. JAVA线程优化

    Java并发编程:线程池的使用 在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了, ...

  8. Linux多线程编程(不限Linux)转

    ——本文一个例子展开,介绍Linux下面线程的操作.多线程的同步和互斥. 前言 线程?为什么有了进程还需要线程呢,他们有什么区别?使用线程有什么优势呢?还有多线程编程的一些细节问题,如线程之间怎样同步 ...

  9. 【HDOJ】1061 Rightmost Digit

    这道题目可以手工打表,也可以机器打表,千万不能暴力解,会TLE. #include <stdio.h> #define MAXNUM 1000000001 ][]; int main() ...

  10. sqliteExpert软件使用(创建数据库和表)

    sqliteExpert是sqlite数据库的可视化操作软件,通过该软件可以进行可视化的创建数据库以及表,免去了复杂的建表语句.首先在下面地址下载该软件http://www.ddooo.com/sof ...