,b>1为常数,f(n)为函数,T(n)=aT(n/b)+f(n)为非负数,令x=logba:

1.       f(n)=o(nx-e),e>0,那么T(n)=O(nx)。

2.       f(n)=O(nx),那么T(n)=O(nlogn)。

3.       f(n)=w(nx+e),e>0且对于某个常数c<1和所有充分大的n有af(n/b)≤cf(n),那么T(n)=O(f(n))。

然而,Master定理并没有完全包括所有的f(n)的情况。注意到条件1和3中的e总是大于0的,所以在条件1和2、条件2和3之间存在所谓的“间隙”,使得某些f(n)在该情况下不能使用该定理。因此,我们需要找到在Master定理不能使用的情况下如何解递归方程的比较通用的办法——递归树。

经过分析,递归树解法包含了Master定理,但是Master定理可以方便的判断出递归方程的解。产生这种结果的原因关键在于f(n)的形式,显然,当f(n)是n的多项式p(n)形式的话必然满足Master定理的要求,但是f(n)不是多项式就需要另当别论了。

下面就题目所列出的递归方程形式进行分析。

。根据递归树计算方式,有:

T(n)= aT(n/b)+n

T(n/b)= aT(n/b2)+(n/b)

T((n/b2)= aT(n/b3)+( n/b2)

……

于是得到:T(n)= n(1+ a/ b+ (a/ bk)2 + (a/ bk)3 +···+
(a/ bk)h),h=logbn。

1logba=k

              这种情况下a/ bk= 1,显然T(n)= O(nlogbn)。

2:logba≠k

此时等比数列公比不是1,根据等比数列求和公式化简得到:

T(n)=( n–nx)/(1-a/bk),x=logba。

如果logba<k,则T(n)= O(nk)。

如果logba>k,则T(n)= O(nx)。x=logba。

通过以上的计算表明,在Master定理的条件中,针对f(n)为多项式的情况可以使用递归树的方法进行证明和计算。同样,在f(n)不是多项式的时候也可以通过的这种方式得到方程的解。

、f(n)是一般函数

当f(n)不是n的多项式的时候,计算就会变得比较复杂,有时可能会也找不到最终的解。但是递归树的方法给我们一种更好使用的解决办法。下面根据一个简单的例子说明这一点:

当a=b=2、f(n)=nlgn时候(lgn:log2n的简记),计算递归方程的解。

T(n)= 2T(n/2)+nlgn 

T(n/b)= 2T(n/22)+(n/2)lg(n/2)。

T((n/b2)= 2T(n/23)+ (n/22)lg(n/22)。

……

于是得到:T(n)= nlgn+(nlgn-lg2)+ (nlgn-2lg2)+ (nlgn-22lg2)+···+(nlgn-2hlg2),h=lgn。

根据等差、等比数列求和公式化简有:

T(n)=n(lgn)–(n-1)lg2,所以T(n)= O( n(lgn)2),而不是O(
nlgn)。

通过这个例子可以看出,当f(n)不是多项式的时候计算就有可能变得比较复杂,甚至无法计算。但是通过Master定理以及具体的数学变换技巧在某些情况下还是可行的。

综上所述,可以得出以下结论:在针对形如T(n)=aT(n/b)+f(n)的递归方程求解方法里,使用递归树是一种比较可行的通用办法。

=======================================================

T(n)=2T(n/2)+n=o(nlogn)

大o记号:大O符号(Big O notation)是用于描述函数渐进行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界(百度百科)

T(n)=2T(n/2)+n

设n=2^k
T(n/2)=2T(n/2^2)+n/2
T(n/2^2)=2T(n/2^3)+n/2^2
T(n)=2T(n/2)+n=2^2T(n/2^2)+2*n/2+n=2^3T(n/2^3)+2^2*n/2^2+2*n/2+n
    =2^kT(1)+kn=nT(1)+kn=n(logn+T(1))=o(nlogn)
    

注:T(1)是常数,可以忽略

https://blog.csdn.net/yuyajun06/article/details/79791508?utm_source=copy 
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

递归方程T(n)=aT(n/b)+f(n)之通用解法的更多相关文章

  1. HDU 4389 X mod f(x)

    题意:求[A,B]内有多少个数,满足x % f(x) == 0. 解法:数位DP.转化为ans = solve(b) - solve(a - 1).设dp[i][sum][mod][r]表示长度为i, ...

  2. 【转】从1到N这N个数中1的出现了多少次?

    给定一个十进制整数N,求出从1到N的所有整数中出现"1"的个数. 例如:N=2,1,2出现了1个"1". N=12,1,2,3,4,5,6,7,8,9,10,1 ...

  3. POJ - 1191 棋盘分割 记忆递归 搜索dp+数学

    http://poj.org/problem?id=1191 题意:中文题. 题解: 1.关于切割的模拟,用递归 有这样的递归方程(dp方程):f(n,棋盘)=f(n-1,待割的棋盘)+f(1,割下的 ...

  4. 我的Java开发学习之旅------>计算从1到N中1的出现次数的效率优化问题

    有一个整数n,写一个函数f(n),返回0到n之间出现的"1"的个数.比如f(1)=1:f(13)=6,问一个最大的能满足f(n)=n中的n是什么? 例如:f(13)=6, 因为1, ...

  5. [LeetCode] Rectangle Area 矩形面积

    Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...

  6. Asp.net 面向接口可扩展框架之类型转化基础服务

    新框架正在逐步完善,可喜可贺的是基础服务部分初具模样了,给大家分享一下 由于基础服务涉及面太广,也没开发完,这篇只介绍其中的类型转化部分,命名为类型转化基础服务,其实就是基础服务模块的类型转化子模块 ...

  7. 一些对数学领域及数学研究的个人看法(转载自博士论坛wcboy)

    转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在 ...

  8. CSS3系列一(概述、选择器、使用选择器插入内容)

    CSS3模块化结构 CSS历史发展 CSS(Cascading Style Sheet),层叠样式表,是用于控制网页样式并允许将样式信息与网页内容分离的一种标记性语言. CSS3属性选择器 E[att ...

  9. c++模板类

    c++模板类 理解编译器的编译模板过程 如何组织编写模板程序 前言常遇到询问使用模板到底是否容易的问题,我的回答是:“模板的使用是容易的,但组织编写却不容易”.看看我们几乎每天都能遇到的模板类吧,如S ...

随机推荐

  1. Python小白学习之路(四)——第一次练习题

    写在前面: 今天下雪了呢!连着两天都没有更新学习记录. 我没有偷懒呢.做了一天的练习题,昨天学的内容还没总结完,太累了就回去睡觉了 连续一周早起,强大的内心也无法支撑我疲惫的身体 今天早起做了整理.加 ...

  2. 【xsy1162】鬼计之夜 最短路+二进制拆分

    套路题(然而我没看题解做不出来) 题目大意:给你一个$n$个点,$m$条有向边的图.图中有$k$个标记点,求距离最近的标记点间距离. 数据范围:$n,m,k≤10^5$. 设$p_i表$示第$i$个标 ...

  3. 【学习笔记】linux bash script

    1. sed sed 是一种流编辑器,它是文本处理中非常常用的工具,能够完美的配合正则表达式使用,功能非常强大. mkdir playground touch test.txt echo " ...

  4. 2 new出的对象 prototype与__proto__

    对象没有原型对象,函数才有 new出的对象,this的会重新创建,二prototype并不会重新创建,而是追溯原型链的方式进行继承 var Book=function(id,bookname,pric ...

  5. 再学Java 之 解决No enclosing instance of type * is accessible

    深夜,临睡前写了个小程序,出了点小问题 public class Test_drive { public static void main(String[] args){ A a = new A(); ...

  6. ubuntu安装maven

    1.安装maven前需要安装JDK 2.下载mavenapache-maven-3.3.9-bin.tar.gz 3.解压maven到当前目录tar -zxvf apache-maven-3.3.9- ...

  7. 使用Second Copy同步ftp服务器的差异文件

    公司一直用自主开发的一个同步工具来进行数据库文件异机备份的,但无奈太不稳定,三天两头出现服务挂死的问题,特别是最近这1个月,几天就1次. 问题现象都是服务一直在运行,但没有复制文件到备份机上,而且备份 ...

  8. 软件魔方制作系统启动盘并安装win10系统

    不多说,直接上干货!  推荐软件:软件魔方 http://mofang.ruanmei.com/ 这里,我想说的是,这个软件来制作系统盘,是真的方便和好处多多.具体我不多说,本人也是用过其他的如大白菜 ...

  9. mysql笔记--group by,limit用法

    table: id tag status a b c d 一.group by用法 .与count 联合计数 select status,count(*) from table group by st ...

  10. springboot-9-在springboot中引入bean

    在非spring管理的包中引入spring管理的类, 可以使用一个类继承ApplicationContextAware即可 分两种, 第一种该类在spring的包扫描范围之下: package com ...