注:本文是人工智能研究网的学习笔记

规范化(Normalization)

Normalization: scaling individual to have unit norm

规范化是指,将单个的样本特征向量变换成具有单位长度(unit norm)的特征向量的过程。当你要使用二次形式(quadratic from)如点积或核变换运算来度量任意一堆样本的相似性的时候,数据的规范化会非常的有用

假定是基于向量空间模型,经常被用于文本分类和内容的聚类。

函数normalize提供了快速简单的方法使用L1或L2范数(距离)执行规范化操作:

X = [[1., -1., 2.],
[2., 0., 0.],
[0., 1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')
X_normalized

注意:该函数按行操作,把每一行变成单位长度。使用每一个元素去除以欧式距离。

preprocessing模块也提供了一个类Normalizer实现了规范化操作,该类是一个变换器Transformer,具有Transformer API(尽管fit方法在这种时候是没有用的: 该类是一个静态类因为归一化操作是将每一个样本单独进行变换,不存在在所有样本上的统计学习过程。)

规范化操作类Normalizer作为数据预处理步骤,应该用在Pineline管道流的早期阶段。

以上的transform过程不依赖于上面的X,也就是说fit是多余的,只是为了整个sklearn的统一。

Sparse input

normalize函数和Normalizer类都接受dense array-like and sparse matrics from scipy.sparse作为输入。

对于稀疏输入,在进入高效的Cython routines处理之前,都会将其转化成CSR(Compressed Sparse Rows)格式(scipy.sparse.csr_matrix),为了避免不必要的数据拷贝,推荐使用CSR格式的稀疏矩阵。

二值化(Binarize)

Binarization: thresholding numerical features to get boolean values

Feature binarization: 将数值型特征取值阈值化转换为布尔型特征取值,这一过程主要是为概率型的学习器(probabilistic estimators)提供数据预处理机制。

概率型学习器(probabilistic estimators)假定输入数据是服从于多变量伯努利分布(multi-variate Bernoulli distribution)的, 概率性学习器的典型的例子是sklearn.neural_network.BrenoulliRBM

在文本处理中,也普遍使用二值特征简化概率推断过程,即使归一化的词频特征或TF-IDF特征的表现比而二值特征稍微好一点。

就像Normalizer,Binarizer也应该用在sklearn.pipeline.Pipeline的早期阶段。fit方法也是什么也不干,有或者没有是一样的。

X = [[1., -1., 2.],
[2., 0., 0.],
[0., 1., -1.]]
binarizer = preprocessing.Binarizer().fit(X)
print(binarizer)
print('-----')
print(binarizer.transform(X))

binarizer = preprocessing.Binarizer(threshold=1.1)
binarizer.transform(X)

就像StandardScaler和Normalizer类一样,preprocessing模块也为我们提供了一个方便的额binarize进行数值特征的二值化。

Sparse input

normalize函数和Normalizer类都接受dense array-like and sparse matrics from scipy.sparse作为输入。

对于稀疏输入,在进入高效的Cython routines处理之前,都会将其转化成CSR(Compressed Sparse Rows)格式(scipy.sparse.csr_matrix),为了避免不必要的数据拷贝,推荐使用CSR格式的稀疏矩阵。

数据预处理:规范化(Normalize)和二值化(Binarize)的更多相关文章

  1. [转载+原创]Emgu CV on C# (四) —— Emgu CV on 全局固定阈值二值化

    重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也 ...

  2. 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段

    处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...

  3. 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化

    1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...

  4. 机器学习入门-数值特征-进行二值化变化 1.Binarizer(进行数据的二值化操作)

    函数说明: 1. Binarizer(threshold=0.9) 将数据进行二值化,threshold表示大于0.9的数据为1,小于0.9的数据为0 对于一些数值型的特征:存在0还有其他的一些数 二 ...

  5. python的N个小功能(图片预处理:打开图片,滤波器,增强,灰度图转换,去噪,二值化,切割,保存)

    ############################################################################################# ###### ...

  6. OpenCV图像的二值化

    图像的二值化: 与边缘检测相比,轮廓检测有时能更好的反映图像的内容.而要对图像进行轮廓检测,则必须要先对图像进行二值化,图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出 ...

  7. [置顶] c#验证码识别、图片二值化、分割、分类、识别

    c# 验证码的识别主要分为预处理.分割.识别三个步骤 首先我从网站上下载验证码 处理结果如下: 1.图片预处理,即二值化图片 *就是将图像上的像素点的灰度值设置为0或255. 原理如下: 代码如下: ...

  8. 图像处理------基于Otsu阈值二值化

    一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值 ...

  9. 深度学习实践-强化学习-bird游戏 1.np.stack(表示进行拼接操作) 2.cv2.resize(进行图像的压缩操作) 3.cv2.cvtColor(进行图片颜色的转换) 4.cv2.threshold(进行图片的二值化操作) 5.random.sample(样本的随机抽取)

    1. np.stack((x_t, x_t, x_t, x_t), axis=2)  将图片进行串接的操作,使得图片的维度为[80, 80, 4] 参数说明: (x_t, x_t, x_t, x_t) ...

随机推荐

  1. Django-Form表单(验证、定制、错误信息、Select)

      Django form 流程 1.创建类,继承form.Form 2.页面根据类的对象自动创建html标签 3.提交,request.POST       封装到类的对象里,obj=UserInf ...

  2. hdu 1004 Let the Balloon Rise(字典树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1004 Let the Balloon Rise Time Limit: 2000/1000 MS (J ...

  3. 20165230 2017-2018-2 《Java程序设计》第6周学习总结

    20165230 2017-2018-2 <Java程序设计>第6周学习总结 教材学习内容总结 第八章 常用使用类 String类常用方法 public int length() publ ...

  4. mysql备份的 三种方式【转】

    备份的本质就是将数据集另存一个副本,但是原数据会不停的发生变化,所以利用备份只能回复到数据变化之前的数据.那变化之后的呢?所以制定一个好的备份策略很重要. 一.备份的目的 做灾难恢复:对损坏的数据进行 ...

  5. ETL利器Kettle实战应用解析系列三

    本系列文章主要索引如下: 一.ETL利器Kettle实战应用解析系列一[Kettle使用介绍] 二.ETL利器Kettle实战应用解析系列二 [应用场景和实战DEMO下载] 三.ETL利器Kettle ...

  6. 使用Scrapy命令行工具【导出JSON文件】时编码设置

    Windows 10家庭中文版,Python 3.6.4,virtualenv 16.0.0,Scrapy 1.5.0, 使用scrapy命令行工具建立了爬虫项目(startproject),并使用s ...

  7. 数据结构之线性表(python版)

    数据结构之线性表(python版) 单链表 1.1  定义表节点 # 定义表节点 class LNode(): def __init__(self,elem,next = None): self.el ...

  8. java基础72 junit单元测试

    1.junit要注意的细节 1.如果junit测试一个方法,在junit窗口上显示绿色代表测试成功:如果显示红条,则代表测试方法出现异常不通过.    2.如果点击方法名.包名.类名.工程名运行jun ...

  9. java 二叉树遍历

    package com.lever; import java.util.LinkedList;import java.util.Queue; /** * 二叉树遍历 * @author lckxxy ...

  10. 阿里云宝塔Linux服务器管理面版初始化地址不能登入(原创)

    宝塔面板是一款可以让Linux服务器实现图形可视化操作的集成系统. 安装好以后,页面初始化登录地址http://{您的服务器IP}:888不能登入. 不能登入通常是我们没有权限访问,需要更改安全组赋予 ...