线程不安全的,如果要想线程安全必须在创建的时候就采用线程安全的方式创建:

 List list = Collections.synchronizedList(new ArrayList(...));

引用博文链接 : http://www.cnblogs.com/leskang/p/6019887.html

构造器:

 public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L; //默认初始大小:10
private static final int DEFAULT_CAPACITY = 10;
//记录列表结构性修改次数,next,add,remove,previous,set操作
protected transient int modCount = 0;
//空数组
private static final Object[] EMPTY_ELEMENTDATA = {}; //默认大小空数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; transient Object[] elementData; // non-private to simplify nested class access private int size; //构建一个大小指定的空列表
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
} //构建一个默认大小(10)的空列表
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
} //构建一个包含集合元素的列表,元素排列顺序是按集合的迭代器返回的顺序
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
......
}

boolean add(E e):

 1     public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!! // 添加之前检查数组容量,size+1表示接下来要有的容量
elementData[size++] = e;  
return true;
} private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {//如果elementData 为空集合
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);//将传入的minCapacity和默认值10比较,选出较大的
} ensureExplicitCapacity(minCapacity);
} private void ensureExplicitCapacity(int minCapacity) {
modCount++; // overflow-conscious code
if (minCapacity - elementData.length > 0)//如果最小容量大于列表现有的长度,则扩容,否则容量不变
grow(minCapacity);
} private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);//>> : 右移运算符,num >> 1,相当于num除以2,此处扩容按照原容量大小的一半扩容
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)//如果新容量大于integer的最大值
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity); //将原有元素拷贝到扩容后的新数组中
} private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ? //如果新容量大于(integer的最大值-8),最大容量就是integer的最大值
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}

总结:ArrayList列表的最大容量就integer的最大值

 

 E remove(int index):

   public E remove(int index) {
rangeCheck(index); modCount++;
E oldValue = elementData(index);//要移除位置上的元素 int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work 将最后一个元素置null回收 return oldValue;
} //System类的方法,从指定源数组中复制一个数组,复制从指定的位置开始,到目标数组的指定位置结束。
从 src 引用的源数组到 dest 引用的目标数组,数组组件的一个子序列被复制下来。被复制的组件的编号等于 length 参数。
18 源数组中位置在 srcPos 到 srcPos+length-1 之间的组件被分别复制到目标数组中的 destPos 到 destPos+length-1 位置。
19 即目标数组的后半段被原数组的后半段(去掉要移除部分)
public static native void arraycopy(Object src, int srcPos,
Object dest, int destPos,
int length);

add(int index, E element):

  public void add(int index, E element) {
rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;//index的位置置为element
size++;
}

总结:ArrayList增删比较慢

addAll:
      public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
     public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index); Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index;
if (numMoved > 0) //如果是列表中间位置插入,先将列表index到index+numNew之间的位置空出来
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved); System.arraycopy(a, 0, elementData, index, numNew);//将新添加的元素添加到空出的位置,这里省了一个numMoved==0的判断
size += numNew;
return numNew != 0;
} //检查脚标是否越界
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
boolean remove(Object o):
  public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
} //此方法和remove类似,没有检查索引是否越界
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}

总结:先判断是否是null,如果是要单独操作;否则通过逐个比较元素来判断要移除元素的位置,再通过类似于remove的方法移除元素

E set(int index, E element):修改
     public E set(int index, E element) {
rangeCheck(index); E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}

总结:直接替换指定位置的元素

E get(int index):
     public E get(int index) {
rangeCheck(index); return elementData(index);
} @SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}

总结:根据数组脚标拿到元素,所以速度快

其他一些方法 :

     //修剪列表的容量到最小值,
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0) //如果size==0,容量是默认值10,
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);//否则将数组拷贝到一个新的数组(长度为size)
}
} //确保列表容量增加到minCapacity
public void ensureCapacity(int minCapacity) {
//如果列表为DEFAULTCAPACITY_EMPTY_ELEMENTDATA,即空列表,则列表容量为默认值10,
否则为0
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
// any size if not default element table
? 0
// larger than default for default empty table. It's already
// supposed to be at default size.
: DEFAULT_CAPACITY; if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
} //判断列表元素个数是否为0
public boolean isEmpty() {
return size == 0;
} public boolean contains(Object o) {
return indexOf(o) >= 0;
} //判断元素o在列表里存在的位置,如果存在返回index,如果不存在返回-1
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
} //判断元素o最后一次出现的位置,如果存在返回index,如果不存在返回-1
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)//从列表尾部开始遍历,第一次出现
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
} //克隆浅表副本
public Object clone() {
try {
ArrayList<?> v = (ArrayList<?>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
} // 按适当顺序(从第一个到最后一个元素)返回包含此列表中所有元素的数组。
由于此列表不维护对返回数组的任何引用,因而它将是“安全的”。
(换句话说,此方法必须分配一个新的数组)。因此,调用者可以自由地修改返回的数组。
此方法担当基于数组的 API 和基于 collection 的 API 之间的桥梁。
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
} public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
} //清空列表
public void clear() {
modCount++; // clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null; size = 0;
} //删除fromIndex(包含)到toIndex(不包含)之间的元素
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
} //检测脚标是否越界
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
} */
//移除与集合c里相同的元素
public boolean removeAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, false);
} //保留与集合c里相同的元素
public boolean retainAll(Collection<?> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
} private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
} //序列化列表
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size); // Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]); //ArrayList的设计者将elementData设计为transient,
然后在writeObject方法中手动将其序列化,并且只序列化了实际存储的那些元素,而不是整个数组。
} if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
} //反序列化列表
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff
s.defaultReadObject(); // Read in capacity
s.readInt(); // ignored if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size); Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}

Iterator<E> iterator(),ListIterator<E> listIterator(int index) 与LinkedList类似:可参考  https://www.cnblogs.com/sqy123/p/9272666.html

还有Spliterator 

     public Iterator<E> iterator() {
return new Itr();
} private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount; public boolean hasNext() {
return cursor != size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} //外部结构修改则迭代快速失败fast-fails
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} //返回此列表中的元素的列表迭代器(按适当顺序:从列表中指定位置开始)
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index); //调用内部类ListItr的匿名对象
} public ListIterator<E> listIterator() {
return new ListItr(0);
} private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
} public boolean hasPrevious() {
return cursor != 0;
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
 List<E> subList(int fromIndex, int toIndex):

对原来的list和返回的sublist做的“非结构性修改”(non-structural changes),都会影响到彼此对方。

所谓的“非结构性修改”,是指不涉及到list的大小改变的修改。相反,结构性修改,指改变了list大小的修改。

博文链接:https://blog.csdn.net/leisurelen/article/details/51174614
     //获取子列表(包括fromIndex,不包括toIndex)
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
} static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
} private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList<E> parent;
private final int parentOffset;
private final int offset;
int size; SubList(AbstractList<E> parent,
int offset, int fromIndex, int toIndex) {
this.parent = parent;
this.parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
} public E set(int index, E e) {
rangeCheck(index);
checkForComodification();
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
} public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
} public int size() {
checkForComodification();
return this.size;
} public void add(int index, E e) {
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
} public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
} protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
} public boolean addAll(Collection<? extends E> c) {
return addAll(this.size, c);
} public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false; checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
} public Iterator<E> iterator() {
return listIterator();
} public ListIterator<E> listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset; return new ListIterator<E>() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount; public boolean hasNext() {
return cursor != SubList.this.size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
} public boolean hasPrevious() {
return cursor != 0;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
} @SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = SubList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[offset + (i++)]);
}
// update once at end of iteration to reduce heap write traffic
lastRet = cursor = i;
checkForComodification();
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
} public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
} private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
} private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
} public Spliterator<E> spliterator() {
checkForComodification();
return new ArrayListSpliterator<E>(ArrayList.this, offset,
offset + this.size, this.modCount);
}
}
void sort(Comparator<? super E> c):比较
   @Override
@SuppressWarnings("unchecked")
//使用自定义比较器进行排序
public void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}

demo:

     public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(3);
list.add(7);
list.add(0); Comparator c = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
// TODO Auto-generated method stub
if((int)o1<(int)o2)
return 1;
//注意!!返回值必须是一对相反数,否则无效。jdk1.7以后就是这样。
// else return 0; //无效
else return -1;
}
};
System.out.println("原始:"+list);
list.sort(c);
System.out.println("排序后:"+list);
}

结果:

 原始:[1, 3, 7, 0]
排序后:[7, 3, 1, 0]

void forEach(Consumer<? super E> action) :

    @Override
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}

demo:

 public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(3);
list.add(7);
list.add(0);
list.forEach(new Consumer<Integer>() { @Override
public void accept(Integer str) {
if (str > 3)
System.out.println(str);
}
}
);
System.out.println(list);
}

结果:

7
[1, 3, 7, 0]

也可以写成lamb表达式,这样更简洁,

  public static void main(String[] args) {
ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(3);
list.add(7);
list.add(0);
list.forEach(str -> {
if (str > 3)
System.out.println(str);
}
);
System.out.println(list);
}

同理  void replaceAll(UnaryOperator<E> operator),boolean removeIf(Predicate<? super E> filter) 引用博文:https://www.cnblogs.com/CarpenterLee/p/6507161.html

  @Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}

JDK1.8源码ArrayList的更多相关文章

  1. 【集合框架】JDK1.8源码分析之ArrayList详解(一)

    [集合框架]JDK1.8源码分析之ArrayList详解(一) 一. 从ArrayList字表面推测 ArrayList类的命名是由Array和List单词组合而成,Array的中文意思是数组,Lis ...

  2. JDK1.8源码学习-ArrayList

    JDK1.8源码学习-ArrayList 目录 一.ArrayList简介 为了弥补普通数组无法自动扩容的不足,Java提供了集合类,其中ArrayList对数组进行了封装,使其可以自动的扩容或缩小长 ...

  3. 【JUC】JDK1.8源码分析之ArrayBlockingQueue(三)

    一.前言 在完成Map下的并发集合后,现在来分析ArrayBlockingQueue,ArrayBlockingQueue可以用作一个阻塞型队列,支持多任务并发操作,有了之前看源码的积累,再看Arra ...

  4. 集合之HashSet(含JDK1.8源码分析)

    一.前言 我们已经分析了List接口下的ArrayList和LinkedList,以及Map接口下的HashMap.LinkedHashMap.TreeMap,接下来看的是Set接口下HashSet和 ...

  5. 【1】【JUC】JDK1.8源码分析之ArrayBlockingQueue,LinkedBlockingQueue

    概要: ArrayBlockingQueue的内部是通过一个可重入锁ReentrantLock和两个Condition条件对象来实现阻塞 注意这两个Condition即ReentrantLock的Co ...

  6. JDK1.8源码学习-LinkedList

    JDK1.8源码学习-LinkedList 目录 一.LinkedList简介 LinkedList是一个继承于AbstractSequentialList的双向链表,是可以在任意位置进行插入和移除操 ...

  7. 【集合框架】JDK1.8源码分析HashSet && LinkedHashSet(八)

    一.前言 分析完了List的两个主要类之后,我们来分析Set接口下的类,HashSet和LinkedHashSet,其实,在分析完HashMap与LinkedHashMap之后,再来分析HashSet ...

  8. JDK1.8源码阅读系列之三:Vector

    本篇随笔主要描述的是我阅读 Vector 源码期间的对于 Vector 的一些实现上的个人理解,用于个人备忘,有不对的地方,请指出- 先来看一下 Vector 的继承图: 可以看出,Vector 的直 ...

  9. 【集合框架】JDK1.8源码分析之HashMap(一) 转载

    [集合框架]JDK1.8源码分析之HashMap(一)   一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化 ...

随机推荐

  1. BZOJ3083 遥远的国度(树链剖分+线段树)

    考虑暴力树剖.那么修改路径和查询子树最小值非常简单. 对于换根当然不能真的给他转一下,我们只记录当前根是哪个.对于查询,如果查询点不在当前根到原根的路径上,显然换根是对答案没有影响的:如果是当前根,答 ...

  2. P4291 [HAOI2008]排名系统

    题目描述 排名系统通常要应付三种请求:上传一条新的得分记录.查询某个玩家的当前排名以及返回某个区段内的排名记录.当某个玩家上传自己最新的得分记录时,他原有的得分记录会被删除.为了减轻服务器负担,在返回 ...

  3. C++ 构造函数初始化列表

    C++ 中类初始化列表执行顺序是按照定义的顺序执行,不是写在初始化列表的顺序执行 #include <bits/stdc++.h> using namespace std; class N ...

  4. 前端学习 --Css -- 子元素的伪类

    :first-child 寻找父元素的第一个子元素,在所有的子元素中排序: :last-child 寻找父元素的最后一个子元素,在所有的子元素中排序: :nth-child 寻找父元素中的指定位置子元 ...

  5. js中apply(thisArg, [argsArray])的参数与ArrayLike的关系

    你是否写过或见到过这样的代码 xx.apply(this,slice.call(arguments)) //slice.call转为数组是否多余 mdn地址 msdn地址 一.微软和mdn对参数的介绍 ...

  6. fzyjojP2963 -- [校内训练20161227]疫情控制问题

    (题干中的废话已经划去) dp显而易见 收益为负数的可以直接扔掉不管.不要一定更优 子串问题,考虑SAM 建立广义SAM 尝试匹配,匹配到的位置的parent树祖先如果有完整的串,那么可以从这个串转移 ...

  7. MySQL 第三篇:表操作

    一 存储引擎介绍 存储引擎即表类型,mysql根据不同的表类型会有不同的处理机制 详见:http://www.cnblogs.com/moyand/p/9020698.html 二 表介绍 表相当于文 ...

  8. R语言外部数据读取

    0  引言 使用R语言.Python等进行数据处理的第一步就是要导入数据(也可以使用UCI数据集),下文主要根据R语言的帮助文档来介绍外部文件数据的导入方法和注意事项.下面先附上一些指令. 1 格式r ...

  9. 网络优化之net.ipv4.tcp_tw_recycle参数

    不要在linux上启用net.ipv4.tcp_tw_recycle参数  2015/07/27  CFC4N 本文为翻译英文BLOG<Coping with the TCP TIME-WAIT ...

  10. "\n" 与"\r" 区别

    关于换行和回车其实平时我们不太在意,所以关于两者的区别也不太清楚,在平时开发时可能会遇到一些文件处理的问题,放到不同的操作系统上出现各种坑.那么回车和换行到底有哪些区别呢?今天咱们就来总结一下. 1. ...