BZOJ 3210: 花神的浇花集会
3210: 花神的浇花集会
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 577 Solved: 299
[Submit][Status][Discuss]
Description
在花老师的指导下,每周4都有一个集会活动,俗称“浇水”活动。
具体浇水活动详情请见BZOJ3153
但这不是重点
花神出了好多题,每道题都有两个参考系数:代码难度和算法难度
花神为了准备浇花集会的题,必须找一道尽量适合所有人的题
现在花神知道每个人的代码能力x和算法能力y,一道题(代码难度X算法难度Y)对这个人的不适合度为 Max ( abs ( X – x ) , abs ( Y – y ) )
也就是说无论太难还是太简单都会导致题目不适合做(如果全按花神本人能力设题,绝对的全场爆0的节奏,太简单,则体现不出花神的实力)
当然不是每次都如花神所愿,不一定有一道题适合所有人,所以要使所有人的不合适度总和尽可能低
花神出了100001*100001道题,每道题的代码难度和算法难度都为0,1,2,3,……,100000
Input
第一行一个正整数N,表示花神有N个学生,花神要为这N个学生选一道题
接下来N行,每行两个空格隔开的整数x[i],y[i],表示这个学生的代码能力和算法能力
Output
一个整数,表示最小的不合适度总和
Sample Input
1 2
2 1
3 3
Sample Output
HINT
Source
很有意思,关键在于将切比雪夫距离(第一次听说这个名字)转换成我们熟悉的曼哈顿距离。
如果原本点的坐标是$(x,y)$,我们现将其坐标转换为$(x+y,x-y)$,就可以满足要求了。
当$x_{1}\leq x_{2},y_{1}\leq y_{2},x_{2}-x{1}\leq y_{2}-y{1}$,距离应为$y_{2}-y_{1}$,我们求到的距离是$(x_{1}+y_{1},x_{1}-y_{1})-(x_{2}+y_{2},x_{2}-y_{2})=|x_{1}+y_{1}-x_{2}-y_{2}|+|x_{1}-y_{1}-x_{2}+y_{2}|=x_{2}-x_{1}+y_{2}-y_{1}+y_{2}-y_{1}+x_{1}-x_{2}=2y_{2}-2y_{1}$,确实符合要求(只是现在距离是应得距离二倍)。另外几个式子类似,不写了。
现在我们要求新的图中某个点使得到点集中所有点的曼哈顿距离和最小,这就是中位数了。注意找一个x,y奇偶性相同的点,使得最终答案是整数。
#include <bits/stdc++.h> inline char nextChar(void)
{
static const int siz = << ; static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz; if (hd == tl)
fread(hd = buf, , siz, stdin); return *hd++;
} inline int nextInt(void)
{
register int ret = ;
register bool neg = false;
register char bit = nextChar(); for (; bit < ; bit = nextChar())
if (bit == '-')neg ^= true; for (; bit > ; bit = nextChar())
ret = ret * + bit - ''; return neg ? -ret : ret;
} typedef long long lnt; const int siz = ; int n;
int x[siz];
int y[siz]; inline lnt calc(int a, int b)
{
lnt ret = ; for (int i = ; i <= n; ++i)
ret += abs(x[i] - a) + abs(y[i] - b); return ret;
} signed main(void)
{
n = nextInt(); for (int i = ; i <= n; ++i)
{
int a = nextInt();
int b = nextInt(); x[i] = a + b;
y[i] = a - b;
} std::sort(x + , x + + n);
std::sort(y + , y + + n); int a = x[(n + ) >> ];
int b = y[(n + ) >> ]; if ((a + b) & )
{
lnt ans = 2e18 + ; ans = std::min(ans, calc(a + , b));
ans = std::min(ans, calc(a - , b));
ans = std::min(ans, calc(a, b + ));
ans = std::min(ans, calc(a, b - )); printf("%lld\n", ans >> );
}
else
printf("%lld\n", calc(a, b) >> );
}
@Author: YouSiki
BZOJ 3210: 花神的浇花集会的更多相关文章
- BZOJ 3210 花神的浇花集会 计算几何- -?
题目大意:给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小 与3170不同的是这次选择的点无需是n个点中的一个 首先将每一个点(x,y)变为(x+y,x-y) 这样新点之间的曼哈顿距离的一 ...
- BZOJ 3210: 花神的浇花集会 (切比雪夫距离)
GXZlegend 切比雪夫和曼哈顿距离的互相转化看这里 传送门 CODE #include <bits/stdc++.h> using namespace std; #define LL ...
- 【BZOJ】【3210】花神的浇花集会
曼哈顿距离与切比雪夫距离 QAQ蒟蒻并不知道切比雪夫距离是什么……并不会做这道题…… 去膜拜了PoPoQQQ大爷的题解: 题目大意:给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小 与31 ...
- BZOJ3210: 花神的浇花集会
3210: 花神的浇花集会 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 238 Solved: 119[Submit][Status] Descri ...
- BZOJ_3210_花神的浇花集会_切比雪夫距离
BZOJ_3210_花神的浇花集会_切比雪夫距离 Description 在花老师的指导下,每周4都有一个集会活动,俗称“浇水”活动. 具体浇水活动详情请见BZOJ3153 但这不是重点 花神出了好多 ...
- 【bzoj3210】花神的浇花集会 旋转坐标系
题目描述 在花老师的指导下,每周4都有一个集会活动,俗称“浇水”活动. 具体浇水活动详情请见BZOJ3153 但这不是重点 花神出了好多题,每道题都有两个参考系数:代码难度和算法难度 花神为了准备浇花 ...
- BZOJ3210: 花神的浇花集会(坐标系变换)
题面 传送门 题解 坐标系变换把切比雪夫距离转化为曼哈顿距离 那么对于所有的\(x\)坐标中,肯定是中位数最优了,\(y\)坐标同理 然而有可能这个新的点不合法,也就是说不存在\((x+y,x-y)\ ...
- bzoj3210 花神的浇花集会 坐标
题目大意:给定平面上的n个点,求一个点到这n个点的切比雪夫距离之和最小 与3170不同的是这次选择的点无需是n个点中的一个 首先将每个点(x,y)变为(x+y,x-y) 这样新点之间的曼哈顿距离的一半 ...
- 【bzoj3210】花神的浇花集会
将(x,y)转化成(x+y,x-y)可以将切比雪夫距离转化成曼哈顿距离(自己推一推) A.B的切比雪夫距离就是A‘.B‘曼哈顿距离的一半. 那么可以将x.y分离处理,排序中位数即可. 注意如果最后选的 ...
随机推荐
- [Processing] 弹球
PVector localPos = new PVector(0,0);//起始位置 PVector velocity;//速度方向 float speed = 20;//速度大小 void setu ...
- java四种访问权限修饰符
java中四个访问权限修饰符: public(公开的).protected(受保护的).default(默认的).private(私有的). 它们决定了紧跟其后被定义的东西的使用范围. 适用范围< ...
- Windows下LimeSDR Mini使用说明
本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 LimeSDR链接:https://item.taobao.com/item.htm?spm=a230r.1 ...
- 如何利用京东云的对象存储(OSS)上传下载文件
作者:刘冀 在公有云厂商里都有对象存储,京东云也不例外,而且也兼容S3的标准因此可以利用相关的工具去上传下载文件,本文主要记录一下利用CloudBerry Explorer for Amazon S3 ...
- type命令详解
转自:http://codingstandards.iteye.com/blog/831504 在脚本中type可用于检查命令或函数是否存在,存在返回0,表示成功:不存在返回正值,表示不成功. $ t ...
- Django_rest_framework_版本(待验证)
简介 API版本控制可以用来在不同的客户端使用不同的行为.REST框架提供了大量不同的版本设计. 版本控制是由传入的客户端请求决定的,并且可能基于请求URL,或者基于请求头. 有许多有效的方法达到版本 ...
- 【转】git乱码解决方案汇总
git乱码解决方案汇 2012-11-04更新:官方的“终极”解决方案:msysGit1.7.10开始使用UTF-8编码保存文件名. 2011-10-24更新: 从一篇链接到本篇文章的文章(我对这篇文 ...
- 图解Raid5数据存储的原理
- Daily Scrum (2015/11/8)
由于编译大作业临近deadline以及各项选修课即将结课,虽然PM强调软工任务也很紧迫,但是大多数成员表示今天想请假一天.符美潇今天把自己所负责的数据库编码部分和谢金洛的UI进行了对接.在测试过程中发 ...
- 2017-2018-2 1723 『Java程序设计』课程 结对编程练习_四则运算 第二周
一.结对对象 姓名:侯泽洋 学号:20172308 担任角色:驾驶员(侯泽洋) 伙伴第二周博客地址 二.本周内容 (一)继续编写上周未完成代码 1.本周继续编写代码,使代码支持分数类计算 2.相关过程 ...