题意

有操作

$0$ $u$:询问有多少个节点 $v$ 满足路径 $u$ 到 $v$ 上所有节点(包括)都拥有相同的颜色
$1$ $u$:翻转 $u$ 的颜色

题解

直接用一个 $LCT$ 去暴力删边连边显然会 $T$

那么只有两个颜色的话就可以建两棵 $LCT$ ,观察到每次单点修改颜色时其子树所包含连通块在原颜色树上与其父亲所代表连通块断开,所以可以看作断开与父节点的边(实际上是点化边的思想),那么其它常规操作即可

注意要建个虚拟节点作为根节点的父亲

注意 $0$ 操作询问的输出,详细解释有在代码注释中给出

代码

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int MAXN = 1e06 + ;
const int MAXM = 1e06 + ; struct LinkedForwardStar {
int to; int next;
} ; LinkedForwardStar Link[MAXM << ];
int Head[MAXN]= {};
int size = ; void Insert (int u, int v) {
Link[++ size].to = v;
Link[size].next = Head[u]; Head[u] = size;
} int N, M;
int ances[MAXN]; struct Link_Cut_Tree {
int father[MAXN];
int son[MAXN][];
int subtree[MAXN], virsize[MAXN]; void init () {
for (int i = ; i <= N; i ++)
father[i] = son[i][] = son[i][] = subtree[i] = virsize[i] = ;
}
int isroot (int p) {
return son[father[p]][] != p && son[father[p]][] != p;
}
int sonbel (int p) {
return son[father[p]][] == p;
}
void pushup (int p) {
subtree[p] = subtree[son[p][]] + subtree[son[p][]] + virsize[p] + ;
}
void rotate (int p) {
int fa = father[p], anc = father[fa];
int s = sonbel (p);
son[fa][s] = son[p][s ^ ];
if (son[fa][s])
father[son[fa][s]] = fa;
if (! isroot (fa))
son[anc][sonbel (fa)] = p;
father[p] = anc;
son[p][s ^ ] = fa, father[fa] = p;
pushup (fa), pushup (p);
}
void splay (int p) {
for (int fa = father[p]; ! isroot (p); rotate (p), fa = father[p])
if (! isroot (fa))
sonbel (p) == sonbel (fa) ? rotate (fa) : rotate (p);
}
void Access (int p) {
for (int tp = ; p; tp = p, p = father[p]) {
splay (p);
virsize[p] += subtree[son[p][]];
son[p][] = tp;
virsize[p] -= subtree[son[p][]];
pushup (p);
}
}
int findroot (int p) {
Access (p), splay (p);
while (son[p][])
p = son[p][];
splay (p);
return p;
}
void link (int p) {
int fa = ances[p];
splay (p);
father[p] = fa;
Access (fa), splay (fa);
subtree[fa] += subtree[p], virsize[fa] += subtree[p];
}
void cut (int p) {
Access (p), splay (p);
father[son[p][]] = , son[p][] = ;
pushup (p);
}
} ;
Link_Cut_Tree LCT[]; void DFS (int root, int father) {
ances[root] = father;
LCT[].link (root);
for (int i = Head[root]; i; i = Link[i].next) {
int v = Link[i].to;
if (v == father)
continue;
DFS (v, root);
}
} int Colour[MAXN]= {}; int getnum () {
int num = ;
char ch = getchar (); while (! isdigit (ch))
ch = getchar ();
while (isdigit (ch))
num = (num << ) + (num << ) + ch - '', ch = getchar (); return num;
} int main () {
N = getnum ();
for (int i = ; i <= N; i ++)
LCT[].subtree[i] = LCT[].subtree[i] = ;
for (int i = ; i < N; i ++) {
int u = getnum (), v = getnum ();
Insert (u, v), Insert (v, u);
}
DFS (, N + );
M = getnum ();
for (int Case = ; Case <= M; Case ++) {
int opt = getnum (), p = getnum ();
int col = Colour[p];
if (opt == ) {
int anc = LCT[col].findroot (p);
printf ("%d\n", LCT[col].subtree[LCT[col].son[anc][]]);
// 注意,因为有可能存在两个不连通的连通快在LCT上连通,又在Access后右节点仅包含当前链
// 故需输出右子树信息而并非减一,否则有可能会算上另一个连通块的答案
}
else if (opt == )
LCT[col].cut (p), LCT[Colour[p] ^= ].link (p);
} return ;
} /*
5
1 2
1 3
1 4
1 5
3
0 1
1 1
0 1
*/ /*
5
1 2
2 3
3 4
4 5
3
1 1
1 3
0 1
*/

SPOJ 16549 - QTREE6 - Query on a tree VI 「一种维护树上颜色连通块的操作」的更多相关文章

  1. QTREE6 - Query on a tree VI 解题报告

    QTREE6 - Query on a tree VI 题目描述 给你一棵\(n\)个点的树,编号\(1\)~\(n\).每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我 ...

  2. SPOJ QTREE6 Query on a tree VI 树链剖分

    题意: 给出一棵含有\(n(1 \leq n \leq 10^5)\)个节点的树,每个顶点只有两种颜色:黑色和白色. 一开始所有的点都是黑色,下面有两种共\(m(1 \leq n \leq 10^5) ...

  3. bzoj3637 CodeChef SPOJ - QTREE6 Query on a tree VI 题解

    题意: 一棵n个节点的树,节点有黑白两种颜色,初始均为白色.两种操作:1.更改一个节点的颜色;2.询问一个节点所处的颜色相同的联通块的大小. 思路: 1.每个节点记录仅考虑其子树时,假设其为黑色时所处 ...

  4. SP16549 QTREE6 - Query on a tree VI LCT维护颜色联通块

    \(\color{#0066ff}{ 题目描述 }\) 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v ...

  5. [QTree6]Query on a tree VI

    Description: 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括 ...

  6. 洛谷SP16549 QTREE6 - Query on a tree VI(LCT)

    洛谷题目传送门 思路分析 题意就是要维护同色连通块大小.要用LCT维护子树大小就不说了,可以看看蒟蒻的LCT总结. 至于连通块如何维护,首先肯定可以想到一个很naive的做法:直接维护同色连通块,每次 ...

  7. SP16549 QTREE6 - Query on a tree VI(LCT)

    题意翻译 题目描述 给你一棵n个点的树,编号1~n.每个点可以是黑色,可以是白色.初始时所有点都是黑色.下面有两种操作请你操作给我们看: 0 u:询问有多少个节点v满足路径u到v上所有节点(包括)都拥 ...

  8. bzoj 3637: Query on a tree VI 树链剖分 && AC600

    3637: Query on a tree VI Time Limit: 8 Sec  Memory Limit: 1024 MBSubmit: 206  Solved: 38[Submit][Sta ...

  9. QTREE6&&7 - Query on a tree VI &&VII

    树上连通块 不用具体距离,只询问连通块大小或者最大权值 可以类比Qtree5的方法,但是记录东西很多,例如子树有无0/1颜色等 一个trick,两个LCT分离颜色 每个颜色在边上. 仅保留连通块顶部不 ...

随机推荐

  1. 搜索引擎(Solr-索引详解)

    时间字段类型特别说明 Solr中提供的时间字段类型( DatePointField, DateRangeField,废除的TrieDateField )是以时间毫秒数来存储时间的. 要求字段值以ISO ...

  2. Mysql向数据库插入数据时,判断是否存在,若不存在就插入数据

    表中一定要有主键  : select :id,此处的id位置处必须是主键 insert into table_name(id, name, password) select :id, :name, : ...

  3. BZOJ 3210: 花神的浇花集会

    3210: 花神的浇花集会 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 577  Solved: 299[Submit][Status][Discus ...

  4. 单点登录(十四)-----实战-----cas5.0.x登录mongodb验证方式常规的四种加密的思考和分析

    我们在上一篇文章中已经讲解了cas4.2.X登录启用mongodb验证方式 单点登录(十三)-----实战-----cas4.2.X登录启用mongodb验证方式完整流程 但是密码是明文存储的,也就是 ...

  5. nodejs进程异常退出处理方法

    1. 捕获uncaughtException process.on('uncaughtException', function (err) { //打印出错误 console.log(err); // ...

  6. Python之旅:入门

    一 编程与编程语言 python是一门编程语言,作为学习python的开始,需要事先搞明白:编程的目的是什么?什么是编程语言?什么是编程? 编程的目的: #计算机的发明,是为了用机器取代/解放人力,而 ...

  7. .net 控件开发常见的特性总结

    http://blog.csdn.net/aofengdaxia/article/details/5924364 在.net开发中常常需要使用一些[]里面的特性描述,我发现对常用的几个知道大概的意思, ...

  8. echarts彩虹柱状图 每个bar显示不同颜色, 标题在不同位置 ,工具中有可以直接保存为图片下载,平均线的添加

    可以参考: https://echarts.baidu.com/echarts2/doc/example.html https://echarts.baidu.com/echarts2/doc/doc ...

  9. 并发库应用之一 & ThreadLocal实现线程范围的共享变量

    ThreadLocal用于实现线程内的数据共享,即对于相同的程序代码,多个模块在同一个线程中运行时要共享一份数据,而在另外线程中运行时又共享另外一份数据. 每个线程调用全局ThreadLocal对象的 ...

  10. openstack指南

    1.openstack官网 http://www.openstack.org/ 2.openstack源码地址 https://github.com/openstack 3.openstack的pac ...