传送门

线性递推

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define re register
using namespace std;
const int maxn = 3000005; int n;
long long mod;
int p[maxn]; int main(){
scanf("%d%lld",&n,&mod);
printf("%d\n",p[1] = 1);
for(re int i = 2 ; i <= n ; ++i) {
p[i] = -mod / i * p[mod % i] % mod;
if(p[i] < 0) p[i] += mod;
printf("%d\n",p[i]);
}
return 0;
}

快速幂

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std; ll n,p; ll ksm (ll a,ll b=p-2){
ll ans=1;
while(b>0){
if(b&1){
ans=ans*a%p;
}
a=a*a%p;
b>>=1;
}
return ans;
} int main(){
ios::sync_with_stdio(false);
cin>>n>>p;
for(int i=1;i<=n;i++) {
cout<<ksm(i)<<endl;
}
return 0;
}

拓展欧几里得

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std; ll n,p;
ll x,y; void exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
} int main(){
ios::sync_with_stdio(false);
cin>>n>>p;
for(int i=1;i<=n;i++){
exgcd(i,p,x,y);
cout<<((x%p)+p)%p<<endl;
}
return 0;
}

洛谷P3811乘法逆元的更多相关文章

  1. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  2. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  3. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  4. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  5. 【洛谷P3811】[模板]乘法逆元

    乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...

  6. 乘法逆元-洛谷-P3811

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  7. 洛谷—— P3811 【模板】乘法逆元

    https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...

  8. P3811 乘法逆元

    传送 乘法逆元:ax ≡ 1 (mod p),其中x为a的逆元,求模意义下的乘法逆元,通常有一下几种方法: 1.拓展欧几里得(也就是exgcd) ax ≡ 1 (mod p) ax-py=1 这就变成 ...

  9. 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)

    题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...

随机推荐

  1. 前端学习 -- Css -- 兄弟元素选择器

    为一个元素后边的元素设置css样式: 语法:前一个 + 后一个. 作用:可以选中一个元素后紧挨着的指定的兄弟元素. 为一个元素后边的所有相同元素设置css样式: 语法:前一个 ~ 后边所有. < ...

  2. %1$s %1$d Android string (java & Android 格式化字符串)

    1$s // String%1$d // int //R.string.old:<string name="old">我今年%1$d岁了</string> ...

  3. 解题:洛谷 p1858 多人背包

    题面 设$dp[i][j]$表示容量为$i$时的第$j$优解,因为是优解,肯定$dp[i][j]$是随着$j$增大不断递减的,这样的话对于一个新加进来的物品,它只可能从两个容量的转移的前$k$优解中转 ...

  4. Activity工作流(2)-入门安装运行第一个例子

    转: Activity工作流(2)-入门安装运行第一个例子 置顶 2017年05月24日 15:58:50 li_ch_ch 阅读数:24432   版权声明:本文为博主原创文章,未经博主允许不得转载 ...

  5. Git6:Git简单远程仓库部署

    目录 一.服务端操作 二.客户端操作 一.服务端操作 1.安装git yum install -y git 2.创建git用户 useradd git 3.创建客户端登录证书 收集所有需要登录的用户的 ...

  6. windows下使用tftp工具下载文件到开发板(linux)

    1.下载tftp工具,也可以上CSDN找个免费0积分的 http://www.52z.com/soft/11886.html 2.确保开发板和windows在同一网段 比如192.168.101.*段 ...

  7. LeetCode-330.Patching Array

    /** * nums的所有元素,假设最大能连续形成[1,sum] 当增加一个element的时候 * 会变成 [1,sum] [element+1,sum+element]两个区间,这两个区间有以下可 ...

  8. 基本UDP套接字编程

    概述 使用TCP编写的应用程序和使用UDP编写的应用程序之间存在一些本质差异,其原因在于这两个传输层之间的差别:UDP是无连接不可靠的数据报协议,非常不同于TCP提供的面向连接的可靠字节流.然而相比T ...

  9. java selenium常用API(WebElement、iFrame、select、alert、浏览器窗口、事件、js) 一

     WebElement相关方法 1.点击操作 WebElement button = driver.findElement(By.id("login")); button.clic ...

  10. Matlab debug

    输入彩色,imwrite保存黑白图片,imwrite的维度错误. 程序如下,正常图像,少了一个维度imwrite,把图片展开,是一个二维的灰色图像(R=G=B),.如果限定了第二维,也是一个灰色图像. ...