简洁是智慧的灵魂,冗长是肤浅的藻饰。——莎士比亚《哈姆雷特》

1 PuLP 库的安装

如果您使用的是 Anaconda[1] 的话(事实上我也更推荐这样做),需要先激活你想要安装的虚拟环境,之后在 Prompt 输入

pip install pulp

不出意外的话等一会就安装完毕。

2 线性规划简介

想必大家能点开这篇文章一定都知道线性规划是什么意思吧……那么我用两个例子再简单说一下。

2.1 线性规划

2.1.1 题目描述[2]

若变量 \(x, y\) 满足约束条件:

\[\left\{
\begin{aligned}
& 2x + 3y - 6\geq 0\\
& x + y - 3 \leq 0\\
& y - 2 \leq 0
\end{aligned}
\right.
\]

求 \(z = 3x + y\) 的最大值。

2.1.2 基本概念

首先,我们要认清在这道题中,\(x\) 和 \(y\) 是可以变的,所以把它们叫做决策变量。三个不等式叫做约束条件,即 \(x\) 和 \(y\) 必须同时满足这三个不等式。我们若画出图来:

其中不满足约束条件的区域被我标上了颜色,所以 \(x, y\) 可以取得值只能在纯白区域内,这一片区域称作可行域

再看最后的我们的目标:求 \(z = x + 3y\) 的最大值。

于是 \(z=x+3y\) 就被称作目标函数,我们的工作就是求这个目标函数的最大值。

整个问题描述为:

\[\begin{eqnarray*}
&\max &z = x+3y \tag{1}\\
&\mathrm{s.t.} & \quad 2x + 3y - 6 \geq0 \tag{2}\\
& & \quad x + 3y - 3 \leq 0 \tag{3}\\
& & \quad y - 2 \leq 0 \tag{4}
\end{eqnarray*}
\]

然后怎么算?别急我们再看一个例子。

2.2 整数规划

2.2.1 题目描述[3]

汽车厂生产小、中、大三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求以及利润如下表所示。要求每月的钢材消耗不超过 600 t,总劳动时间不超过 60 000 h。试指定生产计划使得工厂每月的利润最大。

小型车 中型车 大型车
钢材 / t 1.5 3 5
劳动时间 / h 280 250 400
利润 / 万元 2 3 4

2.2.2 解题思路

首先,设三个决策变量,用 \(x_1, x_2, x_3\) 分别表示生产小型车、中型车、大型车的数量,但是注意要满足:

  • 车的数量只能是整数
  • 车的数量大于等于 0。

其他约束条件看题直接列:

\[\left\{\begin{aligned}
& 1.5 x_1 + 3 x_2 + 5 x_3 \leq 600\\
& 280 x_1 + 250 x_2 + 400 x_2 \leq 60000
\end{aligned}\right.
\]

最后写出目标函数

\[z = 2x_1 + 3x_2 + 4x_3
\]

综合起来整个问题描述为:

\[\begin{eqnarray*}
&\max & z = 2x_1 + 3x_2 + 4x_3 \tag{1}\\
&\mathrm{s.t.} & 1.5 x_1 + 3 x_2 + 5 x_3 \leq 600\tag{2}\\
& & 280 x_1 + 250 x_2 + 400 x_2 \leq 60000\tag{3}\\
& & x_1, x_2, x_3 \geq 0\tag{4}\\
& & x_1, x_2, x_3 均为整数\tag{5}
\end{eqnarray*}
\]

另外可以看出这个题由于涉及到三个决策变量,可行域是相当抽象的,这里就不画了 hhh~

3 求解过程

首先在最前面引入所需的pulp工具库:

import pulp as pl

这句话是引入 pulp 库并简写为 pl,一个 python 库只有在开始 import 了之后才能在后面使用。这样后面凡是用到 pulp 的功能都要写成 pl.xxx

接下来是以下几个步骤:

  • 定义模型
  • 定义决策变量
  • 添加约束条件
  • 添加目标函数
  • 模型求解
  • 打印结果

3.1 定义模型

# Define the model
model = pl.LpProblem(name="My-Model", sense=pl.LpMaximize)

这个操作是使用 pl.LpProblem 创建了一个模型并赋值给变量 model,接收两个参数:

  • name:模型的名字,随便起一个;
  • sense:模型的类型,pl.LpMinimize是求目标函数的最小值,pl.LpMaximize 是求最大值

3.2 定义决策变量

# Define the decision variables
x = pl.LpVariable(name='x')
y = pl.LpVariable(name='y')

如果你的变量比较少的话可以简单这么写。这个意思是定义了两个浮点数变量,取值范围是整个实数域。注意等号左边的变量才是你在之后的计算式中使用的符号,而参数 name 只有在最后打印结果的时候才会被打印出来。另外如果你对变量有其他要求的话可以添加以下参数:

  • lowBound:变量的最小取值(不写的话默认负无穷);
  • upBound:变量的最大取值(默认正无穷);
  • cat:变量的类型,有 pl.Binary 逻辑变量、pl.Integer 整数、pl.Continuous 实数(默认值);

如果你的变量比较多而不得不用 1, 2, 3…… 来编号,可以采用类似这样的写法:

# Define the decision variables
x = {i: pl.LpVariable(name=f"x{i}", lowBound=0, cat=pl.LpInteger) for i in range(1, 9)}

这是一次定义 8 个变量并保存在一个类似数组的结构中,变量都是正整数,分别用 x[1], x[2], ..., x[8] 表示,依次命名为 x1, x2,..., x8。

注意 range(left, right) 表示的区间是左闭右开。

3.3 添加约束条件

# Add constraints
model += (2 * x + 3 * y - 6 >= 0, "constrain_1")
model += (x + 3 * y - 3 == 0, "constrain_2")

没错!如你所见就是这么简单,括号里第一个变量就是你的约束不等式等式,第二个变量是你的自定义的约束名(可以起一个有意义的名字,当然也可以省略)。

由于一些比较数学的原因,约束条件里是不能使用大于号“>”或小于号“<”的。

如果你像前面一样把变量定义在了数组中,那么可以直接用方括号调用:

model += (2 * x[1] + 3 * x[2] - 6 >= 0)

3.4 添加目标函数

# Set the objective
model += x + 3 * y

与前面添加约束条件不同,添加目标函数这一步不用加最外层的括号。

3.5 模型求解

# Solve the optimization problem
status = model.solve()

就写这一句话,调用 modelsolve() 方法,并把结果保存在 status 中。

3.4 打印结果

# Get the results
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}") for var in model.variables():
print(f"{var.name}: {var.value()}") for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")

然后你就能看到模型求解的结果了。

4 示例代码

4.1 高考题代码

首先解决一下 3.1 的高考题:

import pulp as pl

# 定义一个模型,命名为 "Model_3.1",求最大值
model = pl.LpProblem(name="Model_3.1", sense=pl.LpMaximize) # 定义两个决策变量,取值为整个实数域
x = pl.LpVariable(name='x')
y = pl.LpVariable(name='y') # 添加三个约束条件
model += (2 * x + 3 * y - 6 >= 0)
model += (x + y - 3 <= 0)
model += (y - 2 <= 0) # 目标函数
model += x + 3 * y # 求解
status = model.solve() # 打印结果
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}") for var in model.variables():
print(f"{var.name}: {var.value()}") for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")

查看结果的最后几行:

status: 1, Optimal
objective: 7.0
x: 1.0
y: 2.0
_C1: 2.0
_C2: 0.0
_C3: 0.0

最大值是 \(7.0\),在 \(x=1.0, y=2.0\) 时取到。

4.2 汽车厂代码

import pulp as pl

# 定义一个模型,命名为 "Model_3.2",求最大值
model = pl.LpProblem(name="Model_3.2", sense=pl.LpMaximize) # 定义三个决策变量,取值正整数
x = {i: pl.LpVariable(name=f"x{i}", lowBound=0, cat=pl.LpInteger) for i in range(1, 4)} # 添加约束条件
model += (1.5 * x[1] + 3 * x[2] + 5 * x[3] <= 600)
model += (280 * x[1] + 250 * x[2] + 400 * x[3] <= 60000) # 目标函数
model += 2 * x[1] + 3 * x[2] + 4 * x[3] # 求解
status = model.solve() # 打印结果
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}") for var in model.variables():
print(f"{var.name}: {var.value()}") for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")

查看结果的最后几行:

status: 1, Optimal
objective: 632.0
x1: 64.0
x2: 168.0
x3: 0.0
_C1: 0.0
_C2: -80.0

三种车的产量分别取 64、168、0,最大收益 632 万元。


  1. 众所周知 Python 在各个领域如此受欢迎很大程度上是因为其有众多强大的第三方库,但是用的多了就会发现如果安装太多库就有点乱。而 Anaconda 就是一种很方便的管理 Python 环境的工具,不仅可以将不同的库分门别类管理好,更有用的是可以在电脑上安装不同版本的 Python 而不用担心会互相冲突。

  2. 2019 年高考全数学国二卷。

  3. 改编自姜启元等《数学模型(第五版)》108 页例 1。

Python求解线性规划——PuLP使用教程的更多相关文章

  1. Python学习笔记-PuLP库(3)线性规划实例

    本节以一个实际数学建模案例,讲解 PuLP 求解线性规划问题的建模与编程. 1.问题描述 某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克.工人10名,获利10万元:每百箱乙饮料需用原料5千克.工人2 ...

  2. 万字教你如何用 Python 实现线性规划

    摘要:线性规划是一组数学和计算工具,可让您找到该系统的特定解,该解对应于某些其他线性函数的最大值或最小值. 本文分享自华为云社区<实践线性规划:使用 Python 进行优化>,作者: Yu ...

  3. Python实用工具包Scrapy安装教程

       对于想用每个想用Python开发网络爬虫的开发者来说,Scrapy无疑是一个极好的开源工具.今天安装之后觉得Scrapy的安装确实不易啊.所以在此博文一篇,往后来着少走弯路. 废话不多说了,如果 ...

  4. Python 数据处理库 pandas 入门教程

    Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...

  5. Python idle安装与使用教程 调试、下载

    Python idle安装与使用教程 调试.下载 今天我们就来讲一下如何安装Python idle编辑器,也它的调试和使用. 第一步,我们先去下载一个Python idle程序安装包. 本节讲的是wi ...

  6. 『开发技巧』Python音频操作工具PyAudio上手教程

    『开发技巧』Python音频操作工具PyAudio上手教程 ​ 0.引子 当需要使用Python处理音频数据时,使用python读取与播放声音必不可少,下面介绍一个好用的处理音频PyAudio工具包. ...

  7. PySide——Python图形化界面入门教程(四)

    PySide——Python图形化界面入门教程(四) ——创建自己的信号槽 ——Creating Your Own Signals and Slots 翻译自:http://pythoncentral ...

  8. PySide——Python图形化界面入门教程(六)

    PySide——Python图形化界面入门教程(六) ——QListView和QStandardItemModel 翻译自:http://pythoncentral.io/pyside-pyqt-tu ...

  9. PySide——Python图形化界面入门教程(五)

    PySide——Python图形化界面入门教程(五) ——QListWidget 翻译自:http://pythoncentral.io/pyside-pyqt-tutorial-the-qlistw ...

随机推荐

  1. SpringBoot和SpringCloud的区别?

    SpringBoot专注于快速方便的开发单个个体微服务. SpringCloud是关注全局的微服务协调整理治理框架,它将SpringBoot开发的一个个单体微服务整合并管理起来, 为各个微服务之间提供 ...

  2. 怎么理解 Redis 事务?

    1)事务是一个单独的隔离操作:事务中的所有命令都会序列化.按顺序地执行.事务在执行的过程中,不会被其他客户端发送来的命令请求所打断. 2)事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执 ...

  3. Servlet之间的关联

  4. 如何从https://developer.mozilla.org上查询对象的属性、方法、事件使用说明和示例

    在https://developer.mozilla.org搜索要在前面加上指令 搜索之后点进去 进入之后就是这样的 在页面左边你可以选择自己要查询的对象 里面就是会有属性.方法.事件使用说明和示例.

  5. 遇到的问题之“Dubbo 直连 Invoke remote method timeout 问题!”

    Dubbo 直连 Invoke remote method timeout 问题!   在测试环境消费者直连服务端进行测试时, 其中一个RPC接口抛出一个错误, 如下: Caused by: com. ...

  6. jsp页面学习之"javascript:void(0)"的使用

    javascript:void(0) 仅仅表示一个死链接 如果是个# javascript:void(#),就会出现跳到顶部的情况,搜集了一下解决方法 1:<a href="####& ...

  7. 浅谈JavaScript原型与原型链

    对于很多前端开发者而言,JavaScript的原型实在是很让人头疼,所以我这边就整理了一下自己对应原型的一点理解,分享给大家,供交流使用 原型 说起原型,那就不得不说prototype.__proto ...

  8. Redis 中的过期删除策略和内存淘汰机制

    Redis 中 key 的过期删除策略 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 ...

  9. java的命令行参数到底怎么用,请给截图和实际的例子

    8.2 命令行参数示例(实验) public class Test {    public static void main(String[] args){        if(args.length ...

  10. Java List转为Object组

    代码: private Object[] ListToObject(List<String> list){ Object [] tem = new Object[]{}; int size ...