Python求解线性规划——PuLP使用教程
简洁是智慧的灵魂,冗长是肤浅的藻饰。——莎士比亚《哈姆雷特》
1 PuLP 库的安装
如果您使用的是 Anaconda[1] 的话(事实上我也更推荐这样做),需要先激活你想要安装的虚拟环境,之后在 Prompt 输入
pip install pulp
不出意外的话等一会就安装完毕。
2 线性规划简介
想必大家能点开这篇文章一定都知道线性规划是什么意思吧……那么我用两个例子再简单说一下。
2.1 线性规划
2.1.1 题目描述[2]
若变量 \(x, y\) 满足约束条件:
\begin{aligned}
& 2x + 3y - 6\geq 0\\
& x + y - 3 \leq 0\\
& y - 2 \leq 0
\end{aligned}
\right.
\]
求 \(z = 3x + y\) 的最大值。
2.1.2 基本概念
首先,我们要认清在这道题中,\(x\) 和 \(y\) 是可以变的,所以把它们叫做决策变量。三个不等式叫做约束条件,即 \(x\) 和 \(y\) 必须同时满足这三个不等式。我们若画出图来:
其中不满足约束条件的区域被我标上了颜色,所以 \(x, y\) 可以取得值只能在纯白区域内,这一片区域称作可行域。
再看最后的我们的目标:求 \(z = x + 3y\) 的最大值。
于是 \(z=x+3y\) 就被称作目标函数,我们的工作就是求这个目标函数的最大值。
整个问题描述为:
&\max &z = x+3y \tag{1}\\
&\mathrm{s.t.} & \quad 2x + 3y - 6 \geq0 \tag{2}\\
& & \quad x + 3y - 3 \leq 0 \tag{3}\\
& & \quad y - 2 \leq 0 \tag{4}
\end{eqnarray*}
\]
然后怎么算?别急我们再看一个例子。
2.2 整数规划
2.2.1 题目描述[3]
汽车厂生产小、中、大三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求以及利润如下表所示。要求每月的钢材消耗不超过 600 t,总劳动时间不超过 60 000 h。试指定生产计划使得工厂每月的利润最大。
小型车 | 中型车 | 大型车 | |
---|---|---|---|
钢材 / t | 1.5 | 3 | 5 |
劳动时间 / h | 280 | 250 | 400 |
利润 / 万元 | 2 | 3 | 4 |
2.2.2 解题思路
首先,设三个决策变量,用 \(x_1, x_2, x_3\) 分别表示生产小型车、中型车、大型车的数量,但是注意要满足:
- 车的数量只能是整数;
- 车的数量大于等于 0。
其他约束条件看题直接列:
& 1.5 x_1 + 3 x_2 + 5 x_3 \leq 600\\
& 280 x_1 + 250 x_2 + 400 x_2 \leq 60000
\end{aligned}\right.
\]
最后写出目标函数:
\]
综合起来整个问题描述为:
&\max & z = 2x_1 + 3x_2 + 4x_3 \tag{1}\\
&\mathrm{s.t.} & 1.5 x_1 + 3 x_2 + 5 x_3 \leq 600\tag{2}\\
& & 280 x_1 + 250 x_2 + 400 x_2 \leq 60000\tag{3}\\
& & x_1, x_2, x_3 \geq 0\tag{4}\\
& & x_1, x_2, x_3 均为整数\tag{5}
\end{eqnarray*}
\]
另外可以看出这个题由于涉及到三个决策变量,可行域是相当抽象的,这里就不画了 hhh~
3 求解过程
首先在最前面引入所需的pulp
工具库:
import pulp as pl
这句话是引入 pulp
库并简写为 pl
,一个 python 库只有在开始 import
了之后才能在后面使用。这样后面凡是用到 pulp
的功能都要写成 pl.xxx
。
接下来是以下几个步骤:
- 定义模型
- 定义决策变量
- 添加约束条件
- 添加目标函数
- 模型求解
- 打印结果
3.1 定义模型
# Define the model
model = pl.LpProblem(name="My-Model", sense=pl.LpMaximize)
这个操作是使用 pl.LpProblem
创建了一个模型并赋值给变量 model
,接收两个参数:
name
:模型的名字,随便起一个;sense
:模型的类型,pl.LpMinimize
是求目标函数的最小值,pl.LpMaximize
是求最大值
3.2 定义决策变量
# Define the decision variables
x = pl.LpVariable(name='x')
y = pl.LpVariable(name='y')
如果你的变量比较少的话可以简单这么写。这个意思是定义了两个浮点数变量,取值范围是整个实数域。注意等号左边的变量才是你在之后的计算式中使用的符号,而参数 name
只有在最后打印结果的时候才会被打印出来。另外如果你对变量有其他要求的话可以添加以下参数:
lowBound
:变量的最小取值(不写的话默认负无穷);upBound
:变量的最大取值(默认正无穷);cat
:变量的类型,有pl.Binary
逻辑变量、pl.Integer
整数、pl.Continuous
实数(默认值);
如果你的变量比较多而不得不用 1, 2, 3…… 来编号,可以采用类似这样的写法:
# Define the decision variables
x = {i: pl.LpVariable(name=f"x{i}", lowBound=0, cat=pl.LpInteger) for i in range(1, 9)}
这是一次定义 8 个变量并保存在一个类似数组的结构中,变量都是正整数,分别用 x[1]
, x[2]
, ..., x[8]
表示,依次命名为 x1, x2,..., x8。
注意
range(left, right)
表示的区间是左闭右开。
3.3 添加约束条件
# Add constraints
model += (2 * x + 3 * y - 6 >= 0, "constrain_1")
model += (x + 3 * y - 3 == 0, "constrain_2")
没错!如你所见就是这么简单,括号里第一个变量就是你的约束不等式或等式,第二个变量是你的自定义的约束名(可以起一个有意义的名字,当然也可以省略)。
由于一些比较数学的原因,约束条件里是不能使用大于号“>”或小于号“<”的。
如果你像前面一样把变量定义在了数组中,那么可以直接用方括号调用:
model += (2 * x[1] + 3 * x[2] - 6 >= 0)
3.4 添加目标函数
# Set the objective
model += x + 3 * y
与前面添加约束条件不同,添加目标函数这一步不用加最外层的括号。
3.5 模型求解
# Solve the optimization problem
status = model.solve()
就写这一句话,调用 model
的 solve()
方法,并把结果保存在 status
中。
3.4 打印结果
# Get the results
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")
for var in model.variables():
print(f"{var.name}: {var.value()}")
for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")
然后你就能看到模型求解的结果了。
4 示例代码
4.1 高考题代码
首先解决一下 3.1 的高考题:
import pulp as pl
# 定义一个模型,命名为 "Model_3.1",求最大值
model = pl.LpProblem(name="Model_3.1", sense=pl.LpMaximize)
# 定义两个决策变量,取值为整个实数域
x = pl.LpVariable(name='x')
y = pl.LpVariable(name='y')
# 添加三个约束条件
model += (2 * x + 3 * y - 6 >= 0)
model += (x + y - 3 <= 0)
model += (y - 2 <= 0)
# 目标函数
model += x + 3 * y
# 求解
status = model.solve()
# 打印结果
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")
for var in model.variables():
print(f"{var.name}: {var.value()}")
for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")
查看结果的最后几行:
status: 1, Optimal
objective: 7.0
x: 1.0
y: 2.0
_C1: 2.0
_C2: 0.0
_C3: 0.0
最大值是 \(7.0\),在 \(x=1.0, y=2.0\) 时取到。
4.2 汽车厂代码
import pulp as pl
# 定义一个模型,命名为 "Model_3.2",求最大值
model = pl.LpProblem(name="Model_3.2", sense=pl.LpMaximize)
# 定义三个决策变量,取值正整数
x = {i: pl.LpVariable(name=f"x{i}", lowBound=0, cat=pl.LpInteger) for i in range(1, 4)}
# 添加约束条件
model += (1.5 * x[1] + 3 * x[2] + 5 * x[3] <= 600)
model += (280 * x[1] + 250 * x[2] + 400 * x[3] <= 60000)
# 目标函数
model += 2 * x[1] + 3 * x[2] + 4 * x[3]
# 求解
status = model.solve()
# 打印结果
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")
for var in model.variables():
print(f"{var.name}: {var.value()}")
for name, constraint in model.constraints.items():
print(f"{name}: {constraint.value()}")
查看结果的最后几行:
status: 1, Optimal
objective: 632.0
x1: 64.0
x2: 168.0
x3: 0.0
_C1: 0.0
_C2: -80.0
三种车的产量分别取 64、168、0,最大收益 632 万元。
Python求解线性规划——PuLP使用教程的更多相关文章
- Python学习笔记-PuLP库(3)线性规划实例
本节以一个实际数学建模案例,讲解 PuLP 求解线性规划问题的建模与编程. 1.问题描述 某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克.工人10名,获利10万元:每百箱乙饮料需用原料5千克.工人2 ...
- 万字教你如何用 Python 实现线性规划
摘要:线性规划是一组数学和计算工具,可让您找到该系统的特定解,该解对应于某些其他线性函数的最大值或最小值. 本文分享自华为云社区<实践线性规划:使用 Python 进行优化>,作者: Yu ...
- Python实用工具包Scrapy安装教程
对于想用每个想用Python开发网络爬虫的开发者来说,Scrapy无疑是一个极好的开源工具.今天安装之后觉得Scrapy的安装确实不易啊.所以在此博文一篇,往后来着少走弯路. 废话不多说了,如果 ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- Python idle安装与使用教程 调试、下载
Python idle安装与使用教程 调试.下载 今天我们就来讲一下如何安装Python idle编辑器,也它的调试和使用. 第一步,我们先去下载一个Python idle程序安装包. 本节讲的是wi ...
- 『开发技巧』Python音频操作工具PyAudio上手教程
『开发技巧』Python音频操作工具PyAudio上手教程 0.引子 当需要使用Python处理音频数据时,使用python读取与播放声音必不可少,下面介绍一个好用的处理音频PyAudio工具包. ...
- PySide——Python图形化界面入门教程(四)
PySide——Python图形化界面入门教程(四) ——创建自己的信号槽 ——Creating Your Own Signals and Slots 翻译自:http://pythoncentral ...
- PySide——Python图形化界面入门教程(六)
PySide——Python图形化界面入门教程(六) ——QListView和QStandardItemModel 翻译自:http://pythoncentral.io/pyside-pyqt-tu ...
- PySide——Python图形化界面入门教程(五)
PySide——Python图形化界面入门教程(五) ——QListWidget 翻译自:http://pythoncentral.io/pyside-pyqt-tutorial-the-qlistw ...
随机推荐
- SpringBoot和SpringCloud的区别?
SpringBoot专注于快速方便的开发单个个体微服务. SpringCloud是关注全局的微服务协调整理治理框架,它将SpringBoot开发的一个个单体微服务整合并管理起来, 为各个微服务之间提供 ...
- 怎么理解 Redis 事务?
1)事务是一个单独的隔离操作:事务中的所有命令都会序列化.按顺序地执行.事务在执行的过程中,不会被其他客户端发送来的命令请求所打断. 2)事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执 ...
- Servlet之间的关联
- 如何从https://developer.mozilla.org上查询对象的属性、方法、事件使用说明和示例
在https://developer.mozilla.org搜索要在前面加上指令 搜索之后点进去 进入之后就是这样的 在页面左边你可以选择自己要查询的对象 里面就是会有属性.方法.事件使用说明和示例.
- 遇到的问题之“Dubbo 直连 Invoke remote method timeout 问题!”
Dubbo 直连 Invoke remote method timeout 问题! 在测试环境消费者直连服务端进行测试时, 其中一个RPC接口抛出一个错误, 如下: Caused by: com. ...
- jsp页面学习之"javascript:void(0)"的使用
javascript:void(0) 仅仅表示一个死链接 如果是个# javascript:void(#),就会出现跳到顶部的情况,搜集了一下解决方法 1:<a href="####& ...
- 浅谈JavaScript原型与原型链
对于很多前端开发者而言,JavaScript的原型实在是很让人头疼,所以我这边就整理了一下自己对应原型的一点理解,分享给大家,供交流使用 原型 说起原型,那就不得不说prototype.__proto ...
- Redis 中的过期删除策略和内存淘汰机制
Redis 中 key 的过期删除策略 前言 Redis 中 key 的过期删除策略 1.定时删除 2.惰性删除 3.定期删除 Redis 中过期删除策略 从库是否会脏读主库创建的过期键 内存淘汰机制 ...
- java的命令行参数到底怎么用,请给截图和实际的例子
8.2 命令行参数示例(实验) public class Test { public static void main(String[] args){ if(args.length ...
- Java List转为Object组
代码: private Object[] ListToObject(List<String> list){ Object [] tem = new Object[]{}; int size ...