阴间状态,出题人是怎么想到的。。。

为啥lg题解全部都是直接丢状态不说是怎么想的啊。要是以后遇到阴间状态题该怎么想.jpg

首先通过观察,我们可以形象地定义染色:边权为 \(1\) 的边相当于将此边割掉,边权为 \(0\) 的边相当于不割掉。(这个是为了方便思考)

我们要做的就是让祖先不能到达孙子。但是这样好像比较困难,因为实际上一个祖先可能有多个孙子。。。

所以我们考虑让孙子无法到达祖先。我们对孙子枚举一个不超过不超过指定祖先的祖先,表示割掉这个祖先到其父亲的边。

如果割掉这条边,那么这个祖先子树中的所有条件一定都会被满足。

我们先设计一个很傻逼的 DP:\(dp[u][S]\) 表示子树中还有 \(S\) 这些限制没有被满足。

然后我们可以判断自己的父亲是否是这些限制的祖先节点来进行转移。

你发现一件事情:如果我割掉了这条边,那么我子树中的所有限制都被满足了。并且我只需要判定我的父亲是否是这些节点的祖先。

也就是说,我只需要知道这些祖先中,最深的节点就足够判定了。管这么多干嘛?

所以,设 \(dp[u][k]\) 为 \(u\) 子树中,未被满足的限制中,祖先节点最深的那个的深度为 \(k\)。

我们可以根据这个写出转移:

\[dp[u][k]=(\sum_{i=0}^{d[u]}dp[u][k]\times dp[v][i])+((\sum_{i=0}^{k}dp[u][k]\times dp[v][i])+(\sum_{i=0}^{k-1}dp[u][i]\times dp[v][k]))
\]

对于一个节点的初始值,假设所有限制的孙子节点为这个节点的集合为 \(S\),那么我们只需要找到 \(S\) 中祖先节点最深的深度 \(d\),让 \(dp[u][d]=1\) 就行了。

如果 \(S\) 为空,就让 \(dp[u][0]=1\)。因为到后面和其他信息合并的时候,是取一个 \(\max\),自身的深度信息肯定会被遗弃掉。

使用前缀和优化可以做到 \(O(nm)\)。

注意到,每个节点的初始有值的位置只可能有一个,并且满足 \(dp[u][k]=\sum_{\max(x,y)=k}f(dp[u][x],dp[v][y])\) 的模型,可以使用线段树合并来优化。

具体细节见代码:

#include<cstdio>
typedef unsigned ui;
const ui M=5e5+5,mod=998244353;
ui n,m,cnt,tot,d[M],f[M],up[M],h[M],root[M];
struct Edge{
ui v,nx;
}e[M<<1];
inline void Add(const ui&u,const ui&v){
e[++cnt]=(Edge){v,h[u]};h[u]=cnt;
e[++cnt]=(Edge){u,h[v]};h[v]=cnt;
}
struct Node{
ui L,R,sum;
ui tmul;
inline void update(const ui&cmul){
sum=1ull*cmul*sum%mod;
tmul=1ull*tmul*cmul%mod;
}
inline void clear(){
tmul=1;
}
}t[M*30];
inline void pushdown(const ui&u){
if(t[u].L)t[t[u].L].update(t[u].tmul);if(t[u].R)t[t[u].R].update(t[u].tmul);t[u].clear();
}
inline void update(const ui&u){
t[u].sum=(t[t[u].L].sum+t[t[u].R].sum)%mod;
}
inline void Insert(ui&u,const ui&x,const ui&L=0,const ui&R=n){
if(!u)t[u=++tot].clear();++t[u].sum;
if(L<R){
const ui mid=L+R>>1;
if(x<=mid)Insert(t[u].L,x,L,mid);
else Insert(t[u].R,x,mid+1,R);
}
}
inline ui Qid(const ui&u,const ui&x,const ui&L=0,const ui&R=n){
if(L==R)return t[u].sum;
const ui mid=L+R>>1;pushdown(u);
return x<=mid?Qid(t[u].L,x,L,mid):(t[t[u].L].sum+Qid(t[u].R,x,mid+1,R))%mod;
}
inline void Merge(ui&q,const ui&p,const ui&S1,const ui&S2,const ui&L=0,const ui&R=n){
if(!q||!p){
if(q)t[q].update(S1);
if(p)t[p].update(S2);
return void(q|=p);
}
if(L==R){
t[q].sum=(1ull*t[q].sum*(S1+t[p].sum)+1ull*t[p].sum*S2)%mod;
return;
}
const ui mid=L+R>>1;pushdown(q);pushdown(p);
Merge(t[q].R,t[p].R,(S1+t[t[p].L].sum)%mod,(S2+t[t[q].L].sum)%mod,mid+1,R);
Merge(t[q].L,t[p].L,S1,S2,L,mid);
update(q);
}
inline void init(const ui&u){
d[u]=d[f[u]]+1;
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u])f[v]=u,init(v);
}
inline void DFS(const ui&u){
Insert(root[u],up[u]);
for(ui v,E=h[u];E;E=e[E].nx)if((v=e[E].v)^f[u]){
DFS(v);Merge(root[u],root[v],Qid(root[v],d[u]),0);
}
}
signed main(){
scanf("%u",&n);
for(ui i=1;i<n;++i){
ui u,v;scanf("%u%u",&u,&v);Add(u,v);
}
init(1);
scanf("%u",&m);
while(m--){
ui u,v;scanf("%u%u",&u,&v);if(d[u]>up[v])up[v]=d[u];
}
DFS(1);
printf("%u",Qid(root[1],0));
}

LGP6773题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. 通过 call/cc 给 Ice 实现 Coroutine

    前两天给 Ice 加了 call/cc, 为此还重构了一波, 实现 call/cc 还是因为看了轮子哥的大专系列( 里边说提供 continuation 语言实现 Coroutine 起来很轻松, 后 ...

  2. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  3. 小程序入门心得(不谈api)

    小程序入门 一.准备 首先先去微信公众平台注册一个小程序账号,去拿到一个AppID(没AppID也可以开发,只是有些功能会受限),注册成功后到开发设置获取自己的AppID,即使有AppID有些功能还是 ...

  4. Spring Cloud Feign 如何使用对象参数

    概述 Spring Cloud Feign 用于微服务的封装,通过接口代理的实现方式让微服务调用变得简单,让微服务的使用上如同本地服务.但是它在传参方面不是很完美.在使用 Feign 代理 GET 请 ...

  5. 手把手教你把 Git 子模块更新到主项目

    本文以 skywalking-rocketbot-ui子模块合并到 skywalking 为例,手把手教你如何把 Git 子模块更新到主项目中去. 首先,把fork的skywalking项目克隆到本地 ...

  6. 图文并茂详解 NAT 协议!

    什么是 NAT 协议 我们的计算机要想访问互联网上的信息,就需要一个地址,而且这个地址是大家(其他主机)所认可的,是公共的,这个地址也叫做公有 IP 地址. 与之相对的,除了公有 IP 地址外,还有私 ...

  7. Python-Flask框架之"图书管理系统"项目,附详解源代码及页面效果截图

    该图书管理系统要实现的功能如下: 1. 可以通过添加窗口添加书籍或作者,如果要添加的作者和书籍已存在于书架上, 则给出相应的提示: 2. 如果要添加的作者存在,而要添加的书籍书架上没有,则将该书籍添加 ...

  8. WebGL 与 WebGPU比对[5] - 渲染计算的过程

    目录 1. WebGL 1.1. 使用 WebGLProgram 表示一个计算过程 1.2. WebGL 没有通道 API 2. WebGPU 2.1. 使用 Pipeline 组装管线中各个阶段 2 ...

  9. MySQL explain结果Extra中"Using Index"与"Using where; Using index"区别探究

    问题背景 最近用explain命令分析查询sql执行计划,时而能看到Extra中显示为"Using index"或者"Using where; Using Index&q ...

  10. Spring源码之BeanFactoryPostProcessor(后置处理器)

    Spring源码之BeanFactoryPostProcessor(后置处理器). 有点水平的Spring开发人员想必都知道BeanFactoryPostProcessor也就是常说的后置管理器,这是 ...