Python图像处理丨5种图像处理特效
摘要:本篇文章主要讲解了图像常见的特效处理,从处理效果图、算法原理、代码实现三个步骤进行详细讲解,涉及图像素描特效、怀旧特效、光照特效、流年特效、图像滤镜等。
本文分享自华为云社区《[Python图像处理] 二十五.图像特效处理之素描、怀旧、光照、流年以及滤镜特效》,作者: eastmount。
一.图像素描特效
图像素描特效会将图像的边界都凸显出来,通过边缘检测及阈值化处理能实现该功能。一幅图像的内部都具有相似性,而在图像边界处具有明显的差异,边缘检测利用数学中的求导来扩大这种变化。但是求导过程中会增大图像的噪声,所以边缘检测之前引入了高斯滤波降噪处理。本文的图像素描特效主要经过以下几个步骤:
- 调用cv2.cvtColor()函数将彩色图像灰度化处理;
- 通过cv2.GaussianBlur()函数实现高斯滤波降噪;
- 边缘检测采用Canny算子实现;
- 最后通过cv2.threshold()反二进制阈值化处理实现素描特效。
其运行代码如下所示。
#coding:utf-8
import cv2
import numpy as np
#读取原始图像
img = cv2.imread('scenery.png')
#图像灰度处理
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#高斯滤波降噪
gaussian = cv2.GaussianBlur(gray, (5,5), 0)
#Canny算子
canny = cv2.Canny(gaussian, 50, 150)
#阈值化处理
ret, result = cv2.threshold(canny, 100, 255, cv2.THRESH_BINARY_INV)
#显示图像
cv2.imshow('src', img)
cv2.imshow('result', result)
cv2.waitKey()
cv2.destroyAllWindows()
最终输出结果如下图所示,它将彩色图像素描处理。原图是作者去年九月份拍摄于喀纳斯,真的很美~
图像的素描特效有很多种方法,本文仅提供了一种方法,主要提取的是图像的边缘轮廓,还有很多更精细的素描特效方法,提取的轮廓更为清晰,如下图所示。希望读者能自行扩展相关算法知识,并实现对应的效果。
二.图像怀旧特效
图像怀旧特效是指图像经历岁月的昏暗效果,如图所示,左边“src”为原始图像,右边“dst”为怀旧特效图像。
怀旧特效是将图像的RGB三个分量分别按照一定比例进行处理的结果,其怀旧公式如下所示:
Python实现代码主要通过双层循环遍历图像的各像素点,再结合该公式计算各颜色通道的像素值,最终生成如图所示的效果,其完整代码如下。
#coding:utf-8
import cv2
import numpy as np
#读取原始图像
img = cv2.imread('nana.png')
#获取图像行和列
rows, cols = img.shape[:2]
#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")
#图像怀旧特效
for i in range(rows):
for j in range(cols):
B = 0.272*img[i,j][2] + 0.534*img[i,j][1] + 0.131*img[i,j][0]
G = 0.349*img[i,j][2] + 0.686*img[i,j][1] + 0.168*img[i,j][0]
R = 0.393*img[i,j][2] + 0.769*img[i,j][1] + 0.189*img[i,j][0]
if B>255:
B = 255
if G>255:
G = 255
if R>255:
R = 255
dst[i,j] = np.uint8((B, G, R))
#显示图像
cv2.imshow('src', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()
三.图像光照特效
图像光照特效是指图像存在一个类似于灯光的光晕特效,图像像素值围绕光照中心点呈圆形范围内的增强。如下图所示,该图像的中心点为(192,192),光照特效之后中心圆范围内的像素增强了200。
Python实现代码主要是通过双层循环遍历图像的各像素点,寻找图像的中心点,再通过计算当前点到光照中心的距离(平面坐标系中两点之间的距离),判断该距离与图像中心圆半径的大小关系,中心圆范围内的图像灰度值增强,范围外的图像灰度值保留,并结合边界范围判断生成最终的光照效果。
#coding:utf-8
import cv2
import math
import numpy as np
#读取原始图像
img = cv2.imread('scenery.png')
#获取图像行和列
rows, cols = img.shape[:2]
#设置中心点
centerX = rows / 2
centerY = cols / 2
print centerX, centerY
radius = min(centerX, centerY)
print radius
#设置光照强度
strength = 200
#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")
#图像光照特效
for i in range(rows):
for j in range(cols):
#计算当前点到光照中心距离(平面坐标系中两点之间的距离)
distance = math.pow((centerY-j), 2) + math.pow((centerX-i), 2)
#获取原始图像
B = img[i,j][0]
G = img[i,j][1]
R = img[i,j][2]
if (distance < radius * radius):
#按照距离大小计算增强的光照值
result = (int)(strength*( 1.0 - math.sqrt(distance) / radius ))
B = img[i,j][0] + result
G = img[i,j][1] + result
R = img[i,j][2] + result
#判断边界 防止越界
B = min(255, max(0, B))
G = min(255, max(0, G))
R = min(255, max(0, R))
dst[i,j] = np.uint8((B, G, R))
else:
dst[i,j] = np.uint8((B, G, R))
#显示图像
cv2.imshow('src', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()
四.图像流年特效
流年是用来形容如水般流逝的光阴或年华,图像处理中特指将原图像转换为具有时代感或岁月沉淀的特效,其效果如图所示。
Python实现代码如下,它将原始图像的蓝色(B)通道的像素值开根号,再乘以一个权重参数,产生最终的流年效果。
#coding:utf-8
import cv2
import math
import numpy as np
#读取原始图像
img = cv2.imread('scenery.png')
#获取图像行和列
rows, cols = img.shape[:2]
#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")
#图像流年特效
for i in range(rows):
for j in range(cols):
#B通道的数值开平方乘以参数12
B = math.sqrt(img[i,j][0]) * 12
G = img[i,j][1]
R = img[i,j][2]
if B>255:
B = 255
dst[i,j] = np.uint8((B, G, R))
#显示图像
cv2.imshow('src', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()
五.图像滤镜特效
滤镜主要是用来实现图像的各种特殊效果,它在Photoshop中具有非常神奇的作用。滤镜通常需要同通道、图层等联合使用,才能取得最佳艺术效果。本小节将讲述一种基于颜色查找表(Look up Table)的滤镜处理方法,它通过将每一个原始颜色进行转换之后得到新的颜色。比如,原始图像的某像素点为红色(R-255, G-0, B-0),进行转换之后变为绿色(R-0, G-255, B-0),之后所有是红色的地方都会被自动转换为绿色,而颜色查找表就是将所有的颜色进行一次(矩阵)转换,很多的滤镜功能就是提供了这么一个转换的矩阵,在原始色彩的基础上进行颜色的转换。
假设现在存在一张新的滤镜颜色查找表,如图所示,它是一张512×512大小,包含各像素颜色分布的图像。下面这张图片另存为本地,即可直接用于图像滤镜处理。
滤镜特效实现的Python代码如下所示,它通过自定义getBRG()函数获取颜色查找表中映射的滤镜颜色,再依次循环替换各颜色。
#coding:utf-8
import cv2
import numpy as np
#获取滤镜颜色
def getBGR(img, table, i, j):
#获取图像颜色
b, g, r = img[i][j]
#计算标准颜色表中颜色的位置坐标
x = int(g/4 + int(b/32) * 64)
y = int(r/4 + int((b%32) / 4) * 64)
#返回滤镜颜色表中对应的颜色
return lj_map[x][y]
#读取原始图像
img = cv2.imread('scenery.png')
lj_map = cv2.imread('table.png')
#获取图像行和列
rows, cols = img.shape[:2]
#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")
#循环设置滤镜颜色
for i in range(rows):
for j in range(cols):
dst[i][j] = getBGR(img, lj_map, i, j)
#显示图像
cv2.imshow('src', img)
cv2.imshow('dst', dst)
cv2.waitKey()
cv2.destroyAllWindows()
滤镜特效的运行结果如图所示,其中左边“src”为原始风景图像,右边“dst”为滤镜处理后的图像,其颜色变得更为鲜艳,对比度更强。
六.本文小结
本篇文章主要讲解了图像常见的特效处理,从处理效果图、算法原理、代码实现三个步骤进行详细讲解,涉及图像素描特效、怀旧特效、光照特效、流年特效、图像滤镜等,这些知识点将为读者从事Python图像处理相关项目实践或科学研究提供一定基础。
参考文献:
- 《数字图像处理》(第3版),冈萨雷斯著,阮秋琦译,电子工业出版社,2013年.
- 《数字图像处理学》(第3版),阮秋琦,电子工业出版社,2008年,北京.
- 《OpenCV3编程入门》,毛星云,冷雪飞,电子工业出版社,2015,北京.
- Eastmount - [Android] 通过Menu实现图片怀旧、浮雕、模糊、光照和素描效果
- 使用python和opencv将图片转化为素描图-python代码解析
- 謝灰灰在找胡蘿蔔. IOS开发--使用lookup table为图片添加滤镜
- 百度百科. 滤镜
Python图像处理丨5种图像处理特效的更多相关文章
- Python图像处理丨三种实现图像形态学转化运算模式
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算.图像闭运算和梯度运算 本文分享自华为云社区<[Python图像处理] 九.形态学之图像开运算.闭运算.梯度运 ...
- 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效
摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...
- 使用C#进行图像处理的几种方法(转)
本文讨论了C#图像处理中Bitmap类.BitmapData类和unsafe代码的使用以及字节对齐问题. Bitmap类 命名空间:System.Drawing 封装 GDI+ 位图,此位图由图形图像 ...
- (转)C#进行图像处理的几种方法(Bitmap,BitmapData,IntPtr)
转自 http://blog.sina.com.cn/s/blog_628821950100wh9w.html C#进行图像处理的几种方法 本文讨论了C#图像处理中Bitmap类.BitmapData ...
- C#数字图像处理的3种方法
本文主要通过彩色图象灰度化来介绍C#处理数字图像的3种方法,Bitmap类.BitmapData类和Graphics类是C#处理图像的的3个重要的类. Bitmap只要用于处理由像素数据定义的图像的对 ...
- [转]使用C#进行图像处理的几种方法
最近做监控图像由彩色变灰处理的时候发现图像处理过程中,很慢很慢代码如下: int Height = this.picInfo.Image.Height; int ...
- Atitit 图像处理 常用8大滤镜效果 Jhlabs 图像处理类库 java常用图像处理类库
Atitit 图像处理 常用8大滤镜效果 Jhlabs 图像处理类库 java常用图像处理类库1.1. 5种常用的Photoshop滤镜,分别针对照片的曝光.风格色调.黑白照片处理.锐利度.降噪这五大 ...
- 基础知识:编程语言介绍、Python介绍、Python解释器安装、运行Python解释器的两种方式、变量、数据类型基本使用
2018年3月19日 今日学习内容: 1.编程语言的介绍 2.Python介绍 3.安装Python解释器(多版本共存) 4.运行Python解释器程序两种方式.(交互式与命令行式)(♥♥♥♥♥) 5 ...
- Python爬虫丨大众点评数据爬虫教程(1)
大众点评数据获取 --- 基础版本 大众点评是一款非常受普罗大众喜爱的一个第三方的美食相关的点评网站. 因此,该网站的数据也就非常有价值.优惠,评价数量,好评度等数据也就非常受数据公司的欢迎. 今天就 ...
- Python中的三种数据结构
Python中,有3种内建的数据结构:列表.元组和字典.1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目.列表中的项目.列表中的项目应该包括在方括号中,这 ...
随机推荐
- PostgreSQL 修改执行计划 GroupAggregate 为 HashAggregate
1.前言 PostgreSQL 聚合算法有两种,HashAggregate and GroupAggregate .我们知道GroupAggregate 需要对记录进行排序,而 HashAggrega ...
- Linux_etc-passwd文件总结
文件内容 ## # User Database # # Note that this file is consulted directly only when the system is runnin ...
- kubernetes之基于ServiceAccount拉取私有镜像
前面可以通过ImagPullPolicy和ImageullSecrets指定下载镜像的策略,ServiceAccount也可以基于spec.imagePullSecret字段附带一个由下载镜像专用的S ...
- 3、StringBuffer类
StringBuffer类 java.lang.StringBuffer代表可变的字符序列,可以对字符串内容进行增删 很多方法与String相同,但StringBuffer是可变长度的 StringB ...
- tar.gz方式安装nacos设置使用systemct进行service方式的管理并设置开机自启动--废弃不用这个
nacos解压缩目录是:/opt/nacos 编写shell脚本 # vim /opt/nacos/bin/nacos.sh #!/bin/bash source /etc/profile workD ...
- python 代码执行顺序
Python代码在执行过程中,遵循下面的基本原则: 普通语句,直接执行: 碰到函数,将函数体载入内存,并不直接执行 碰到类,执行类内部的普通语句,但是类的方法只载入,不执行 碰到if.for等控制语句 ...
- 高可用(vrrp)以及mysql主主备份部署
高可用说起来感觉很高大上,我刚接触的时候也是一头雾水,但是需求的时候很容易理解的,当一台服务器挂了另一台能够马上顶上去继续提供服务,这就叫做高可用,需求其实不难理解,只是需要自身根据项目的实际需求还有 ...
- [题解] Codeforces 468 E Permanent 折半,DP,图论
题目 建立一个二分图,左右各n个点,在左边的第x个点和右边的第y个点之间连一条权值为\(a_{x,y}\)的边.根据"积和式"的定义,我们是要在矩阵中选择n个位置,满足任意两个位置 ...
- Seal-Report: 开放式数据库报表工具
Seal Report是.Net的一个基于Apache 2.0 开源工具,完全用C# 语言编写,最新的6.6 版本采用.NET 6,github: https://github.com/ariacom ...
- <jsp:useBean>动作的使用
jsp:useBean动作的使用 jsp:useBean动作用于在指定的范围内寻找指定名称的JavaBean对象,如果找到,则返回该对象的引用可以操作里边的属性.如果没有找到则重新实例化一个对象.并且 ...