知识点简单总结——BSGS与EXBSGS
知识点简单总结——BSGS与EXBSGS
BSGS
给出 $ A,B,C,(A,C)=1 $ ,要你求最小的 $ x $ ,使得 $ A^x \equiv B(mod \ C) $ 。
在数论题中经常会看见这样的式子,而它的用处确实也不少,例如:
求指标
。。。想不到了(被打)
解题思路
众所周知 $ A^{x} \equiv A^{x \ mod \ \phi (C) }(mod \ C) $
所以考虑暴力枚举就可以。
但是我们显然要考虑一个更快的。
分块就好了。
设块大小 $ m $ ,预处理出 $ A^{1,2,...,m-1} $ 扔进哈希表。
剩下的应该不难了,经典分块一般的操作。
枚举每一个 $ i $ ,左式 $ =A^{im} $ 时哈希表里是否存在一个值 $ z $ 使得 $ A^{im}*z \equiv B(mod \ C) $ ,存在的话就返回该最小答案。
EXBSGS
同上,唯一变化就是不保证 $ (A,C)=1 $ 。
既然它不给保证那就我们自己让它转化成 $ (A,C)=1 $ 。
对于 $ A^x \equiv B(mod \ C),(A,C)=d $ ,直接全都除以 $ d $ ,
(如果 $ B \ mod \ d \neq 0 $ 直接无解)
变成 $ (A/d)*A^{x-1} \equiv B/d(mod \ C/d) $ 。
此时仍然无法保证 $ A $ 与 $ C/d $ 互质,
那么就重复以上操作直到互质。
然后就没了。
知识点简单总结——BSGS与EXBSGS的更多相关文章
- 知识点简单总结——FWT(快速沃尔什变换),FST(快速子集变换)
知识点简单总结--FWT(快速沃尔什变换),FST(快速子集变换) 闲话 博客园的markdown也太傻逼了吧. 快速沃尔什变换 位运算卷积 形如 $ f[ i ] = \sum\limits_{ j ...
- 知识点简单总结——Pollard-Rho算法
知识点简单总结--Pollard-Rho算法 MillerRabin算法 用于对较大(int64)范围内的数判定质数. 原理:费马小定理,二次探测定理. 二次探测定理:若 $ p $ 为奇素数且 $ ...
- 知识点简单总结——minmax容斥
知识点简单总结--minmax容斥 minmax容斥 好像也有个叫法叫最值反演? 就是这样的一个柿子: \[max(S) = \sum\limits_{ T \subseteq S } min(T) ...
- 知识点简单总结——Lyndon分解
知识点简单总结--Lyndon分解 Lyndon串 定义:一个字符串的最小后缀就是整个串本身. 等效理解:这个串为其所有循环表示中最小的. Lyndon分解 定义:将字符串分割为 $ s_{1} s_ ...
- BSGS与exBSGS学习笔记
\(BSGS\)用于解决这样一类问题: 求解\(A^x ≡B(modP)\)的最小\(x\),其中\(P\)为质数. 这里我们采用分块的方法,把\(x\)分解为\(i *t-b\)(其中\(t\)是分 ...
- XPath知识点简单总结(思维导图)
XPath是一种用于在XML文档中查找信息的语言,其对HTML也有很好的支持,所以在网络爬虫中可用于解析HTML文档.参考链接. 下图是XPath知识点的简单总结成思维导图:
- 省选算法学习-BSGS与exBSGS与二次剩余
前置知识 扩展欧几里得,快速幂 都是很基础的东西 扩展欧几里得 说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象 翡蜀定理 方程$ax+by=gcd(a,b)$ ...
- BSGS和EXBSGS
也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BS ...
- 「算法笔记」BSGS 与 exBSGS
一.离散对数 给定 \(a,b,m\),存在一个 \(x\),使得 \(\displaystyle a^x\equiv b\pmod m\) 则称 \(x\) 为 \(b\) 在模 \(m\) 意义下 ...
随机推荐
- suse 12 sp3 利用shell脚本离线编译安装ansible
# 测试环境是suse 12 sp3的系统,机器都是内网使用的,安装ansible真的很难顶 # 测试环境使用的python版本:2.7.13-27 # 此脚本只在本人测试环境成功,其他环境,需要选择 ...
- 非对称加解密 Asymmetric encryption 对称加密和非对称加密的区别
考虑这样一个问题:一切的装备文件都存储在 Git 长途库房,RAR密码破解装备文件中的一些信息又是比较灵敏的.所以,我们需求对这些灵敏信息进行加密处理.首要的加密方法分为两种:一种是同享密钥加 密(对 ...
- 使用hystrix监控时出现java.lang.ClassNotFoundException: com.netflix.hystrix.contrib.javanica.aop.aspectj.HystrixCommandAsp错误,导致无法启动
解决方法: 添加依赖 <dependency> <groupId>com.netflix.hystrix</groupId> <artifactId>h ...
- 渗透测试工具篇之目录扫描工具dirmap
(一)dirmap介绍 一个高级web目录扫描工具,功能将会强于DirBuster.Dirsearch.cansina.御剑 (二)dirmap安装 打开浏览器输入https://github.com ...
- 如何使用 Rancher Desktop 访问 Traefik Proxy 仪表板
Adrian Goins 最近举办了关于如何使用 K3s 和 Traefik 保护和控制边缘的 Kubernetes 大师班,演示了如何访问 K3s 的 Traefik Proxy 仪表板,可以通过以 ...
- 号外!号外!这个敏捷高效的大数据bi看板可以免费使用啦!
随着信息革命的深入推进,数据已经成为国家基础性战略资源,各个行业开始重视数据分析,企业不同,数据分析需求当然不一样,如销售行业需要对商品进行销售分析:网站运营需要进行用户.渠道.流量等信息分析:制造行 ...
- SPYEYE手机远程监控和官方SPYEYE间谍软件最新下载方式
听起来远程控制手机好像很高级的样子,但是实现起来其实非常简单.实现原理如下: 运行程序,让程序不停地读取数据 用手机给手机发送邮件 判断是否读取到指定主题的手机,如果有,则获取手机内容 根据邮件内容, ...
- 你的程序员女孩「GitHub 热点速览 v.22.09」
本周最火的项目要数上周推荐的开源项目 How to Cook,火到一周涨了 18k+ star,但网友对它的定量烹饪方法褒贬不一.在本人看来,烹饪本就是一门"玄学",萝卜青菜各有所 ...
- 【C# 异常处理】调试器 管理异常
装载自:https://docs.microsoft.com/zh-cn/visualstudio/debugger/managing-exceptions-with-the-debugger?vie ...
- Map<String, String> 遍历的四种方法
Map<String, String> map = new HashMap<String, String>(); map.put("key1", " ...