ACGAN-pytorch
点击查看代码
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.utils import save_image
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim)
self.init_size = opt.img_size // 4 # Initial size before upsampling
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise, labels):
gen_input = torch.mul(self.label_emb(labels), noise)
out = self.l1(gen_input)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
"""Returns layers of each discriminator block"""
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
self.conv_blocks = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
# Output layers
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())
def forward(self, img):
out = self.conv_blocks(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
label = self.aux_layer(out)
return validity, label
# Loss functions
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
auxiliary_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
def sample_image(n_row, batches_done):
"""Saves a grid of generated digits ranging from 0 to n_classes"""
# Sample noise
z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
# Get labels ranging from 0 to n_classes for n rows
labels = np.array([num for _ in range(n_row) for num in range(n_row)])
labels = Variable(LongTensor(labels))
gen_imgs = generator(z, labels)
save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Adversarial ground truths
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(FloatTensor))
labels = Variable(labels.type(LongTensor))
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise and labels as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))
# Generate a batch of images
gen_imgs = generator(z, gen_labels)
# Loss measures generator's ability to fool the discriminator
validity, pred_label = discriminator(gen_imgs)
g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Loss for real images
real_pred, real_aux = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
# Loss for fake images
fake_pred, fake_aux = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels)) / 2
# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2
# Calculate discriminator accuracy
pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0)
d_acc = np.mean(np.argmax(pred, axis=1) == gt)
d_loss.backward()
optimizer_D.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)
ACGAN-pytorch的更多相关文章
- Ubutnu16.04安装pytorch
1.下载Anaconda3 首先需要去Anaconda官网下载最新版本Anaconda3(https://www.continuum.io/downloads),我下载是是带有python3.6的An ...
- 解决运行pytorch程序多线程问题
当我使用pycharm运行 (https://github.com/Joyce94/cnn-text-classification-pytorch ) pytorch程序的时候,在Linux服务器 ...
- 基于pytorch实现word2vec
一.介绍 word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包.它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量 ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
- pytorch实现VAE
一.VAE的具体结构 二.VAE的pytorch实现 1加载并规范化MNIST import相关类: from __future__ import print_function import argp ...
- PyTorch教程之Training a classifier
我们已经了解了如何定义神经网络,计算损失并对网络的权重进行更新. 接下来的问题就是: 一.What about data? 通常处理图像.文本.音频或视频数据时,可以使用标准的python包将数据加载 ...
- PyTorch教程之Neural Networks
我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层 ...
- PyTorch教程之Autograd
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...
- Linux安装pytorch的具体过程以及其中出现问题的解决办法
1.安装Anaconda 安装步骤参考了官网的说明:https://docs.anaconda.com/anaconda/install/linux.html 具体步骤如下: 首先,在官网下载地址 h ...
- Highway Networks Pytorch
导读 本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks. 一 .Highway ...
随机推荐
- P8622 [蓝桥杯 2014 国 B] 生物芯片
简要题意 有 \(N\) 个二进制数,编号为 \(1\sim N\),初始时都是 \(0\).博士进行了 \(N-1\) 次操作,在第 \(i\) 次操作时,会将 \(1\sim N\) 中所有编号为 ...
- 多目标优化经典算法——NSGA-II
参考博客链接 https://blog.csdn.net/qq_35414569/article/details/79639848?utm_medium=distribute.pc_relevant. ...
- MySQL 合并查询union 查询出的行合并到一个表中
在合并查询中,尤其是二分类的情况,在查询结果是相同列名的时候可以考虑合并查询.先查询出行的结果,再使用union或者union all合并查询结果. 另外如果 union 和 order by 一起使 ...
- Java 进阶P-7.4+P-7.5
JTable 用JTbale类可以以表格的形式显示和编辑数据. JTable类的对象并不存储数据,他只是数据的表现. 表格是 Swing 新增加的组件,主要功能是把数据以二维表格的形式显示出来,并且允 ...
- 容器镜像仓库-Harbor的安装及踩坑
之前实验室的师兄让我帮忙给服务器上装一个Harbor,花了不少时间,遂记录之,以避坑. 在学习使用Harbor之前,需要了解Docker的使用,可以看看我之前的博客:应用容器引擎-Docker.Doc ...
- SpringBoot实现电子文件签字+合同系统
本文已经收录到Github仓库,该仓库包含计算机基础.Java基础.多线程.JVM.数据库.Redis.Spring.Mybatis.SpringMVC.SpringBoot.分布式.微服务.设计模式 ...
- 云原生时代顶流消息中间件Apache Pulsar部署实操-上
@ 目录 安装 运行时Java版本推荐 Locally Standalone集群 启动 验证 部署分布式集群 部署说明 初始化集群元数据 部署BookKeeper 部署Broker Admin客户端和 ...
- Python+chatGPT编程5分钟快速上手,强烈推荐!!!
最近一段时间chatGPT火爆出圈!无论是在互联网行业,还是其他各行业都赚足了话题. 俗话说:"外行看笑话,内行看门道",今天从chatGPT个人体验感受以及如何用的角度来分享一下 ...
- Java期末测试
会议预约管理信息系统(50分) 1.项目背景: 会议是企业进行决策.协商的重要组织形式,是企业日常办公处理事务的重要手段,是办公流程中不可缺少的重要环节,作为企业,如何有效的进行会议组织,管理 ...
- ChatGPT调研分析与应用场域结合构想
作者:京东科技 胡骏 摘要 1. ChatGPT调研分析 2022年11月30日,ChatGPT横空出世,在全球范围内形成了热烈的讨论.根据Similarweb的数据,今年1月,平均每天约有1300万 ...