传统图像处理算法进行“天空分割”存在精度问题且调参复杂,无法很好地应对云雾、阴霾等情况;本篇文章分享的“基于Unet+opencv实现天空对象的分割、替换和美化”,较好地解决了该问题,包括以下内容:
1、基于Unet语义分割的基本原理、环境构建、参数调节等
2、一种有效的天空分割数据集准备方法,并且获得数据集
3、基于OpenCV的Pytorch模型部署方法
4、融合效果极好的 SeamlessClone 技术
5、饱和度调整、颜色域等基础图像处理知识和编码技术
    本文适合具备 OpenCV 和Pytorch相关基础,对“天空替换”感兴趣的人士。学完本文,可以获得基于Pytorch和OpenCV进行语义分割、解决实际问题的具体方法,提高环境构建、数据集准备、参数调节和运行部署等方面综合能力。
 一、传统方法和语义分割基础
1.1传统方法主要通过“颜色域”来进行分割

比如,我们要找的是蓝天,那么在HSV域,就可以通过查表的方法找出蓝色区域。

在这张表中,蓝色的HSV的上下门限已经标注出来,我们编码实现。

    cvtColor(matSrc,temp,COLOR_BGR2HSV);
split(temp,planes);
equalizeHist(planes[2],planes[2]);//对v通道进行equalizeHist
merge(planes,temp);
inRange(temp,Scalar(100,43,46),Scalar(124,255,255),temp);
erode(temp,temp,Mat());//形态学变换,填补内部空洞
dilate(temp,temp,Mat());
imshow("原始图",matSrc);

在这段代码中,有两个小技巧,一个是对模板(MASK)进行了形态学变化,这个不展开说;一个是我们首先对HSV图进行了3通道分解,并且直方图增强V通道,而后将3通道合并回去。通过这种方法能够增强原图对比度,让蓝天更蓝、青山更青……大家可以自己调试看一下。 显示处理后识别为天空的结果(在OpenCV中,白色代表1也就是由数据,黑色代表0也就是没数据)

对于天坛这幅图来说,效果不错。虽然在右上角错误,而塔中间的一个很小的空洞,这些后期都是可以规避掉的错误。

但是对于阴霾图片来说,由于天空中没有蓝色,识别起来就很错误很多。

1.2 语义分割基础

图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例如让计算机在输入下面左图的情况下,能够输出右图。语义在语音识别中指的是语音的意思,在图像领域,语义指的是图像的内容,对图片意思的理解,比如左图的语义就是三个人骑着三辆自行车;分割的意思是从像素的角度分割出图片中的不同对象,对原图中的每个像素都进行标注,比如右图中粉红色代表人,绿色代表自行车。

那么对于天空分割问题来说,主要目标就是找到像素级别的天空对象,使用语义分割模型就是有效的。

二、Unet基本情况和环境构建
Unet 发表于 2015 年,属于 FCN 的一种变体,Unet 的初衷是为了解决生物医学图像方面的问题,由于效果确实很好后来也被广泛的应用在语义分割的各个方向,比如卫星图像分割,工业瑕疵检测等。它也有很多变体,但是对于天空分割问题来看,Unet的能力已经够了。
Unet 跟 FCN 都是 Encoder-Decoder 结构,结构简单但很有效。Encoder 负责特征提取,你可以将自己熟悉的各种特征提取网络放在这个位置。由于在医学方面,样本收集较为困难,作者为了解决这个问题,应用了图像增强的方法,在数据集有限的情况下获得了不错的精度。
 

如上图,Unet 网络结构是对称的,形似英文字母 U 所以被称为 Unet。整张图都是由蓝/白色框与各种颜色的箭头组成,其中,蓝/白色框表示 feature map;蓝色箭头表示 3x3 卷积,用于特征提取;灰色箭头表示 skip-connection,用于特征融合;红色箭头表示池化 pooling,用于降低维度;绿色箭头表示上采样 upsample,用于恢复维度;青色箭头表示 1x1 卷积,用于输出结果。
在环境构建这块,我建议一定要结合自己的实际情况,构建专用的代码库,这样才能够通过不断迭代,在总体正确的前提下形成自己风格。
在我的库中,基于现有的Unet代码进行了修改
其中checkpoints、data保持数据;unet是模型的具体实现,未来可以扩充为多模型;utils是常用函数;alibaba.py和oss2helper.py是阿里云的辅助函数;export_unet.py是输出函数;eveluate.py和train.py用于训练;predict.py用于本地测试;main.py是主要函数。
三、数据集准备和增强
3.1 数据集准备这块,我采取了增强的方法。由于个人习惯问题,采用的是OpenCV本地变换的方法

 getFiles("e:/template/Data_sky/data", fileNames);
string saveFile = "e:/template/Data_sky/dataEX3/";
for (int index = 0; index < fileNames.size(); index++)
{
Mat src = imread(fileNames[index]);
Mat dst;
string fileName;
getFileName(fileNames[index], fileName);
resize(src, dst, cv::Size(512, 512));
imwrite(saveFile + fileName + "_512.jpg", dst);
resize(src, dst, cv::Size(256, 256));
imwrite(saveFile + fileName + "_256.jpg", dst);
resize(src, dst, cv::Size(128, 128));
imwrite(saveFile + fileName + "_128.jpg", dst);
cout << fileName << endl;
}
fileNames.clear();
getFiles("e:/template/Data_sky/mask", fileNames);
saveFile = "e:/template/Data_sky/maskEX3/";
for (int index = 0; index < fileNames.size(); index++)
{
Mat src = imread(fileNames[index], 0);
Mat dst;
string fileName;
getFileName(fileNames[index], fileName);
fileName = fileName.substr(0, fileName.size() - 3);
resize(src, dst, cv::Size(512, 512));
imwrite(saveFile + fileName + "_512_gt.jpg", dst);
resize(src, dst, cv::Size(256, 256));
imwrite(saveFile + fileName + "_256_gt.jpg", dst);
resize(src, dst, cv::Size(128, 128));
imwrite(saveFile + fileName + "_128_gt.jpg", dst);
cout << fileName << endl;
}

从而获得不同分辨率的目标数据,但是如何获得标注数据?我推荐一种方法。
3.2、通过对“阿里视觉智能开放平台”的研究,调用它的成果来进行训练。简单来说,它提供了天空分割的功能,但是要求数据的输入输出都保存在oss中,所以需要通过python来编写脚本。我对这段python代码进行了一些注释,放在这里。
# -*- coding: utf8 -*-
from aliyunsdkcore.client import AcsClient
from aliyunsdkimageseg.request.v20191230 import SegmentSkyRequest
from aliyunsdkimageseg.request.v20191230.SegmentHDSkyRequest import SegmentHDSkyRequest
import oss2
import os
import json
import urllib # 创建 AcsClient 实例
client = AcsClient("LTAI5tQCCmMyKSfifwsFHLpC", "JyzNfHsCnUaVTeS6Xg3ylMjQFC8C6L", "cn-shanghai")
request = SegmentSkyRequest.SegmentSkyRequest()
endpoint = "https://oss-cn-shanghai.aliyuncs.com"
accesskey_id = "LTAI5tQCCmMyKSfifwsFHLpC"
accesskey_secret = "JyzNfHsCnUaVTeS6Xg3ylMjQFC8C6L"
bucket_name = "datasky2"
bucket_name2 = "viapi-cn-shanghai-dha-segmenter" #本地文件保存路径前缀
download_local_save_prefix = "/home/helu/GOPytorchHelper/data/dataOss/" '''
列举prefix全部文件
'''
def prefix_all_list(bucket,prefix):
print("开始列举"+prefix+"全部文件");
oss_file_size = 0;
for obj in oss2.ObjectIterator(bucket, prefix ='%s/'%prefix):
print(' key : ' + obj.key)
oss_file_size = oss_file_size + 1;
download_to_local(bucket, obj.key, obj.key);
print(prefix +" file size " + str(oss_file_size)); '''
列举全部的根目录文件夹、文件
'''
def root_directory_list(bucket):
# 设置Delimiter参数为正斜线(/)。
for obj in oss2.ObjectIterator(bucket, delimiter='/'):
# 通过is_prefix方法判断obj是否为文件夹。
if obj.is_prefix(): # 文件夹
print('directory: ' + obj.key);
prefix_all_list(bucket,str(obj.key).strip("/")); #去除/
else: # 文件
print('file: ' +obj.key)
# 填写Object完整路径,例如exampledir/exampleobject.txt。Object完整路径中不能包含Bucket名称。
object_name = obj.key
# 生成下载文件的签名URL,有效时间为60秒。
# 生成签名URL时,OSS默认会对Object完整路径中的正斜线(/)进行转义,从而导致生成的签名URL无法直接使用。
# 设置slash_safe为True,OSS不会对Object完整路径中的正斜线(/)进行转义,此时生成的签名URL可以直接使用。
url = bucket.sign_url('GET', object_name, 60, slash_safe=True)
print('签名url的地址为:', url)
## 如下url替换为自有的上海region的oss文件地址
request.set_ImageURL(url)
response = client.do_action_with_exception(request)
print('response地址为:', response)
user_dict = json.loads(response)
for name in user_dict.keys():
if(name.title() == "Data"):
inner_dict = user_dict[name]
for innerName in inner_dict.keys():
if(innerName == "ImageURL"):
finalName = inner_dict[innerName]
print('finalName地址为:',str(finalName))
urllib.request.urlretrieve(str(finalName), download_local_save_prefix+obj.key)
'''
下载文件到本地
'''
def download_to_local(bucket,object_name,local_file):
url = download_local_save_prefix + local_file;
#文件名称
file_name = url[url.rindex("/")+1:]
file_path_prefix = url.replace(file_name, "")
if False == os.path.exists(file_path_prefix):
os.makedirs(file_path_prefix);
print("directory don't not makedirs "+ file_path_prefix);
# 下载OSS文件到本地文件。如果指定的本地文件存在会覆盖,不存在则新建。
bucket.get_object_to_file(object_name, download_local_save_prefix+local_file); if __name__ == '__main__':
print("start \n");
# 阿里云主账号AccessKey拥有所有API的访问权限,风险很高。强烈建议您创建并使用RAM账号进行API访问或日常运维,请登录 https://ram.console.aliyun.com 创建RAM账号。
auth = oss2.Auth(accesskey_id,accesskey_secret)
# Endpoint以杭州为例,其它Region请按实际情况填写。
bucket = oss2.Bucket(auth,endpoint , bucket_name)
bucket2= oss2.Bucket(auth,endpoint , bucket_name2)
#单个文件夹下载
root_directory_list(bucket);
print("end \n");
四、模型训练概要
将数据集放入项目中,运行u2net_train.py即可。
4.1读懂训练部分代码,其中在step5的地方,我添加了一段处理,用于float和int类型之间转换
 # 5. Begin training
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
images = batch['image']
true_masks = batch['mask'] assert images.shape[1] == net.n_channels, \
f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {images.shape[1]} channels. Please check that ' \
'the images are loaded correctly.' images = images.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.long)
######
one = torch.ones_like(true_masks)
zero = torch.zeros_like(true_masks)
true_masks = torch.where(true_masks>0,one,zero)
##### with torch.cuda.amp.autocast(enabled=amp):
masks_pred = net(images)
loss = criterion(masks_pred, true_masks) \
+ dice_loss(F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),
multiclass=True) optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update() pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item() pbar.set_postfix(**{'loss (batch)': loss.item()}) # Evaluation round
division_step = (n_train // (10 * batch_size))
if division_step > 0:
if global_step % division_step == 0:
histograms = {}
for tag, value in net.named_parameters():
tag = tag.replace('/', '.') val_score = evaluate(net, val_loader, device)
scheduler.step(val_score) logging.info('Validation Dice score: {}'.format(val_score)) if save_checkpoint:
Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
torch.save(net.state_dict(), str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch + 1)))
logging.info(f'Checkpoint {epoch + 1} saved!')
 
4.2 推荐适当投资,采购了autodl进行在线训练

通过predict生成模板结果,在Photoshop中进行比对发现边界已经比较贴合,最终在增强的数据集上,实现了DICE90%的目标。
五、基于OpenCV的Pytorch模型部署方法
 
这里为了进行总结,我对分别对目前使用Python和C++下的几种可行可用的推断方法进行汇总,并进一步比对。
5.1 (python)使用onnxruntime方法进行推断
session = onnxruntime.InferenceSession("转换的onnx文件")
input_name = session.get_inputs()[0].name
label_name = session.get_outputs()[0].name img_name_list = ['需要处理的图片']
image = Image.open(img_name_list[0])
w, h = image.size
dataset = SalObjDataset(
img_name_list=img_name_list,
lbl_name_list=[],
transform=transforms.Compose([RescaleT(320), ToTensorLab(flag=0)])
)
data_loader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
num_workers=1
)
im = list(data_loader)[0]['image']
inputs_test = im
inputs_test = inputs_test.type(torch.FloatTensor)
with torch.no_grad():
inputs_test = Variable(inputs_test)
res = session.run([label_name], {input_name: inputs_test.numpy().astype(np.float32)})
result = torch.from_numpy(res[0])
pred = result[:, 0, :, :]
pred = normPRED(pred)
pred = pred.squeeze()
predict_np = pred.cpu().data.numpy()
im = Image.fromarray(predict_np * 255).convert('RGB')
im = im.resize((w, h), resample=Image.BILINEAR)
im.show()
5.2 (python) 使用opencv方法
import os
import argparse from skimage import io, transform
import numpy as np
from PIL import Image
import cv2 as cv parser = argparse.ArgumentParser(description='Demo: U2Net Inference Using OpenCV')
parser.add_argument('--input', '-i')
parser.add_argument('--model', '-m', default='u2net_human_seg.onnx')
args = parser.parse_args() def normPred(d):
ma = np.amax(d)
mi = np.amin(d)
return (d - mi)/(ma - mi) def save_output(image_name, predict):
img = cv.imread(image_name)
h, w, _ = img.shape
predict = np.squeeze(predict, axis=0)
img_p = (predict * 255).astype(np.uint8)
img_p = cv.resize(img_p, (w, h))
print('{}-result-opencv_dnn.png-------------------------------------'.format(image_name))
cv.imwrite('{}-result-opencv_dnn.png'.format(image_name), img_p) def main():
# load net
net = cv.dnn.readNet('saved_models/sky_split.onnx')
input_size = 320 # fixed
# build blob using OpenCV
img = cv.imread('test_imgs/sky1.jpg')
blob = cv.dnn.blobFromImage(img, scalefactor=(1.0/255.0), size=(input_size, input_size), swapRB=True)
# Inference
net.setInput(blob)
d0 = net.forward('output')
# Norm
pred = normPred(d0[:, 0, :, :])
# Save
save_output('test_imgs/sky1.jpg', pred) if __name__ == '__main__':
main()
5.3 (c++)使用libtorch方法

//    std::string strModelPath = "E:/template/u2net_train.pt";
void bgr_u2net(cv::Mat& image_src, cv::Mat& result, torch::jit::Module& model)
{
//1.模型已经导入
auto device = torch::Device("cpu");
//2.输入图片,变换到320
cv::Mat image_src1 = image_src.clone();
cv::resize(image_src1, image_src1, cv::Size(320, 320));
cv::cvtColor(image_src1, image_src1, cv::COLOR_BGR2RGB);
// 3.图像转换为Tensor
torch::Tensor tensor_image_src = torch::from_blob(image_src1.data, { image_src1.rows, image_src1.cols, 3 }, torch::kByte);
tensor_image_src = tensor_image_src.permute({ 2,0,1 }); // RGB -> BGR互换
tensor_image_src = tensor_image_src.toType(torch::kFloat);
tensor_image_src = tensor_image_src.div(255);
tensor_image_src = tensor_image_src.unsqueeze(0); // 拿掉第一个维度 [3, 320, 320]
//4.网络前向计算
auto src = tensor_image_src.to(device);
auto pred = model.forward({ src }).toTuple()->elements()[0].toTensor(); //模型返回多个结果,用toTuple,其中elements()[i-1]获取第i个返回值 //d1,d2,d3,d4,d5,d6,d7= net(inputs_test) //pred = d1[:,0,:,:]
auto res_tensor = (pred * torch::ones_like(src));
res_tensor = normPRED(res_tensor);
//是否就是Tensor转换为图像
res_tensor = res_tensor.squeeze(0).detach();
res_tensor = res_tensor.mul(255).clamp(0, 255).to(torch::kU8); //mul函数,表示张量中每个元素乘与一个数,clamp表示夹紧,限制在一个范围内输出
res_tensor = res_tensor.to(torch::kCPU);
//5.输出最终结果
cv::Mat resultImg(res_tensor.size(1), res_tensor.size(2), CV_8UC3);
std::memcpy((void*)resultImg.data, res_tensor.data_ptr(), sizeof(torch::kU8) * res_tensor.numel());
cv::resize(resultImg, resultImg, cv::Size(image_src.cols, image_src.rows), cv::INTER_LINEAR);
result = resultImg.clone();
}
5.4 (c++)使用opencv方法
#include "opencv2/dnn.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp" #include <iostream> #include "opencv2/objdetect.hpp" using namespace cv;
using namespace std;
using namespace cv::dnn; int main(int argc, char ** argv)
{
Net net = readNetFromONNX("E:/template/sky_split.onnx"); if (net.empty()) {
printf("read model data failure...\n");
return -1;
} // load image data
Mat frame = imread("e:/template/sky14.jpg");
Mat blob;
blobFromImage(frame, blob, 1.0 / 255.0, Size(320, 320), cv::Scalar(), true);
net.setInput(blob);
Mat prob = net.forward("output");
Mat slice(cv::Size(prob.size[2], prob.size[3]), CV_32FC1, prob.ptr<float>(0, 0));
normalize(slice, slice, 0, 255, NORM_MINMAX, CV_8U);
resize(slice, slice, frame.size()); return 0;
}
综合考虑后,选择opencv onnx的部署方式
import os
import torch
from unet import UNet def main():
net = UNet(n_channels=3, n_classes=2, bilinear=True) net.load_state_dict(torch.load("checkpoints/skyseg0113.pth", map_location=torch.device('cpu')))
net.eval() # --------- model 序列化 ---------
example = torch.zeros(1, 3, 320, 320) #这里经过实验,最大是 example = torch.zeros(1, 3, 411, 411) torch_script_module = torch.jit.trace(net, example)
#torch_script_module.save('unet_empty.pt')
torch.onnx.export(net, example, 'checkpoints/skyseg0113.onnx', opset_version=11)
print('over') if __name__ == "__main__":
main() int main()
{
//参数和常量准备
Net net = readNetFromONNX("E:/template/skyseg0113.onnx");
if (net.empty()) {
printf("read model data failure...\n");
return -1;
}
// load image data
Mat frame = imread("E:\\sandbox/sky4.jpg");
pyrDown(frame, frame);
Mat blob;
blobFromImage(frame, blob, 1.0 / 255.0, Size(320, 320), cv::Scalar(), true);
net.setInput(blob);
Mat prob = net.forward("473");//???对于Unet来说,example最大为(411,411),原理上来说,值越大越有利于分割
Mat slice(cv::Size(prob.size[2], prob.size[3]), CV_32FC1, prob.ptr<float>(0, 0));
threshold(slice, slice, 0.1, 1, cv::THRESH_BINARY_INV);
normalize(slice, slice, 0, 255, NORM_MINMAX, CV_8U); Mat mask;
resize(slice, mask, frame.size());//制作mask
}
通过这种方法,就能够获得模型推断的模板对象,其中“473”是模型训练过程的层名,由于我们在训练的过程中没有指定,所以按照系统自己的名字给出。

我们可以通过netron的方式查看获得这里的名称。
 
六、结合SeamlessClone等图像处理方法,实现最终效果
 
int main()
{
//参数和常量准备
Net net = readNetFromONNX("E:/template/skyseg0113.onnx");
if (net.empty()) {
printf("read model data failure...\n");
return -1;
}
// load image data
Mat frame = imread("E:\\sandbox/sky4.jpg");
pyrDown(frame, frame);
Mat blob;
blobFromImage(frame, blob, 1.0 / 255.0, Size(320, 320), cv::Scalar(), true);
net.setInput(blob);
Mat prob = net.forward("473");
Mat slice(cv::Size(prob.size[2], prob.size[3]), CV_32FC1, prob.ptr<float>(0, 0));
threshold(slice, slice, 0.1, 1, cv::THRESH_BINARY_INV);
normalize(slice, slice, 0, 255, NORM_MINMAX, CV_8U); Mat mask;
resize(slice, mask, frame.size());//制作mask
Mat matSrc = frame.clone();
VP maxCountour = FindBigestContour(mask);
Rect maxRect = boundingRect(maxCountour);
if (maxRect.height == 0 || maxRect.width == 0)
maxRect = Rect(0, 0, mask.cols, mask.rows);//特殊情况
////天空替换
Mat matCloud = imread("E:/template/cloud/cloud1.jpg");
resize(matCloud, matCloud, frame.size());
//直接拷贝
matCloud.copyTo(matSrc, mask);
imshow("matSrc", matSrc);
//seamless clone
matSrc = frame.clone();
Point center = Point((maxRect.x + maxRect.width) / 2, (maxRect.y + maxRect.height) / 2);//中间位置为蓝天的背景位置
Mat normal_clone;
Mat mixed_clone;
Mat monochrome_clone;
seamlessClone(matCloud, matSrc, mask, center, normal_clone, NORMAL_CLONE);
seamlessClone(matCloud, matSrc, mask, center, mixed_clone, MIXED_CLONE);
seamlessClone(matCloud, matSrc, mask, center, monochrome_clone, MONOCHROME_TRANSFER);
imshow("normal_clone", normal_clone);
imshow("mixed_clone", mixed_clone);
imshow("monochrome_clone", monochrome_clone);
waitKey();
return 0;
}
在调用seamlessClone()的时候报错:
报错原因:可以看seamlessClone源码(opencv/modules/photo/src/seamless_cloning.cpp),在执行seamlessClone的时候,会先求mask内物体的boundingRect,然后会把这个最小框矩形复制到dst上,矩形中心对齐center
这个过程中可能矩形会超出dst的边界范围,就会报上面的roi边界错误。
这里错误的根源应该还是OpenCV 这块的代码有问题,其中roi_s不应该适用BoundingRect进行处理。除了进行修改重新编译,或者直接进行PR解决之外,我们可以采取一些补救的。这里我采取了2手方法来避免异常:一个是在模板制作的过程中,除了获得的最大区域之外,主动地将其他区域涂黑,从而保证BoundingRect能够准确地框选天空区域;二个是在seamlessClone之前,对模板进行异常判断,对可能出现的情况进程处置。
通过添加opencv代码,进行系统联调:

修改后的代码为:
int main()
{
//参数和常量准备
Net net = readNetFromONNX("E:/template/skyseg0113.onnx");
if (net.empty()) {
printf("read model data failure...\n");
return -1;
}
vector<string> vecFilePaths;
getFiles("e:/template/sky", vecFilePaths);
string strSavePath = "e:/template/sky_change_result";
for (int index = 0;index<vecFilePaths.size();index++)
{
try{
string strFilePath = vecFilePaths[index];
string strFileName;
getFileName(strFilePath, strFileName);
Mat frame = imread(strFilePath);
pyrDown(frame, frame);
Mat blob;
blobFromImage(frame, blob, 1.0 / 255.0, Size(320, 320), cv::Scalar(), true);
net.setInput(blob);
Mat prob = net.forward("473");
Mat slice(cv::Size(prob.size[2], prob.size[3]), CV_32FC1, prob.ptr<float>(0, 0));
threshold(slice, slice, 0.1, 1, cv::THRESH_BINARY_INV);
normalize(slice, slice, 0, 255, NORM_MINMAX, CV_8U);
Mat mask;
resize(slice, mask, frame.size());//制作mask
Mat matSrc = frame.clone();
VP maxCountour = FindBigestContour(mask);
Rect maxRect = boundingRect(maxCountour);
if (maxRect.height == 0 || maxRect.width == 0)
maxRect = Rect(0, 0, mask.cols, mask.rows);//特殊情况
Mat maskRedux(mask.size(), mask.type(), Scalar::all(0));
Mat roi1 = mask(maxRect);
Mat roi2 = maskRedux(maxRect);
roi1.copyTo(roi2);
////天空替换
Mat matCloud = imread("E:/template/cloud/cloud2.jpg");
resize(matCloud, matCloud, frame.size());
//直接拷贝
matCloud.copyTo(matSrc, maskRedux);
matSrc = frame.clone();
cv::Point center = Point((maxRect.x + maxRect.width) / 2, (maxRect.y + maxRect.height) / 2);//中间位置为蓝天的背景位置
Rect roi_s = maxRect;
Rect roi_d(center.x - roi_s.width / 2, center.y - roi_s.height / 2, roi_s.width, roi_s.height);
if(! (0 <= roi_d.x && 0 <= roi_d.width && roi_d.x + roi_d.width <= matSrc.cols && 0 <= roi_d.y && 0 <= roi_d.height && roi_d.y + roi_d.height <= matSrc.rows))
center = Point(matSrc.cols / 2, matSrc.rows / 2);//这里错误的根源应该还是OpenCV 这块的代码有问题,其中roi_s不应该适用BoundingRect进行处理.所以采取补救的方法
Mat mixed_clone;
seamlessClone(matCloud, matSrc, maskRedux, center, mixed_clone, MIXED_CLONE);
string saveFileName = strSavePath + "/" + strFileName + "_cloud2.jpg";
imwrite(saveFileName, mixed_clone);
}
catch (Exception * e)
{
continue;
}
}
2022 0312 更新代码

int main()
{
Mat src = imread("e:/template/tiantan.jpg");
Mat matCloud = imread("E:/template/cloud/cloud2.jpg");
Mat mask = imread("e:/template/tiantanmask2.jpg", 0);
resize(matCloud, matCloud, src.size());
resize(mask, mask, src.size());
Mat matSrc = src.clone();
Mat board = mask.clone();
cvtColor(board, board, COLOR_GRAY2BGR);
//寻找模板最大轮廓
VP maxCountour = FindBigestContour(mask);
Rect maxRect = boundingRect(maxCountour);
//异常处理
Mat maskCopy = mask.clone();
copyMakeBorder(maskCopy, maskCopy, 1, 1, 1, 1, BORDER_ISOLATED | BORDER_CONSTANT, Scalar(0));
Rect roi_s = boundingRect(maskCopy);
if (roi_s.empty()) return -1;
cv::Point center = Point((maxRect.x + maxRect.width) / 2, (maxRect.y + maxRect.height) / 2);
Rect roi_d(center.x - roi_s.width / 2, center.y - roi_s.height / 2, roi_s.width, roi_s.height);
if (!(0 <= roi_d.x && 0 <= roi_d.width && roi_d.x + roi_d.width <= matSrc.cols && 0 <= roi_d.y && 0 <= roi_d.height && roi_d.y + roi_d.height <= matSrc.rows))
center = Point(matSrc.cols / 2, matSrc.rows / 2);
//融合
Mat normal_clone, mixed_clone, monochrome_clone;
seamlessClone(matCloud, matSrc, mask, center, normal_clone, NORMAL_CLONE);
seamlessClone(matCloud, matSrc, mask, center, mixed_clone, MIXED_CLONE);
seamlessClone(matCloud, matSrc, mask, center, monochrome_clone, MONOCHROME_TRANSFER);
waitKey();
return 0;
}
七、结果对比和小结
效果是相当不错的,但是在部署过程中也可能会遇到一些问题;特别是如果用于手机端部署,必然有工具链的问题。

我在hugginface上也实现了可以在线测试的效果。分别是skgseg和skgchange
https://huggingface.co/spaces/jsxyhelu/skyseg

 
最后,“天空替换”整个问题,只是语义分割的一种应用,结果是美化的图片。这是价值比较有限的,必须要转换为量化的结果,用于定量计数,才能够推动生产实践。
此外,关于算法运行效率,也是部署应用的重要环节,在部署实现的时候也需要重点考虑。

基于Unet+opencv实现天空对象的分割、替换和美化的更多相关文章

  1. Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图

    Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图 分类: OpenCV图像处理2013-02-21 21:35 6459人阅读 评论(8) 收藏 举报   原文链接  ht ...

  2. 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台

    搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...

  3. 面向对象的JavaScript --- 原型模式和基于原型继承的JavaScript对象系统

    面向对象的JavaScript --- 原型模式和基于原型继承的JavaScript对象系统 原型模式和基于原型继承的JavaScript对象系统 在 Brendan Eich 为 JavaScrip ...

  4. Prometheus基于consul自动发现监控对象 https://www.iloxp.com/archive/11/

      Prometheus 监控目标为什么要自动发现 频繁对Prometheus配置文件进行修改,无疑给运维人员带来很大的负担,还有可能直接变成一个“配置小王子”,即使是配置小王子也会存在人为失误的情况 ...

  5. JS对象 字符串分割 split() 方法将字符串分割为字符串数组,并返回此数组。 语法: stringObject.split(separator,limit)

    字符串分割split() 知识讲解: split() 方法将字符串分割为字符串数组,并返回此数组. 语法: stringObject.split(separator,limit) 参数说明: 注意:如 ...

  6. opencv:Mat对象

    Mat对象:图像文件的内存数据对象 读取为 Mat 对象 读取图像位Mat对象,获取图像的相关信息 #include <opencv2/opencv.hpp> #include <i ...

  7. 开源基于lua gc管理c++对象的cocos2dx lua绑定方案

    cocos2dx目前lua对应的c++对象的生命周期管理,是基于c++析构函数的,也就是生命周期可能存在不一致,比如c++对象已经释放,而lua对象还存在,如果这时候再使用,会有宕机的风险,为此我开发 ...

  8. 基于Apache组件,分析对象池原理

    池塘里养:Object: 一.设计与原理 1.基础案例 首先看一个基于common-pool2对象池组件的应用案例,主要有工厂类.对象池.对象三个核心角色,以及池化对象的使用流程: import or ...

  9. 基于MIndSpore框架的道路场景语义分割方法研究

    基于MIndSpore框架的道路场景语义分割方法研究 概述 本文以华为最新国产深度学习框架Mindspore为基础,将城市道路下的实况图片解析作为任务背景,以复杂城市道路进行高精度的语义分割为任务目标 ...

  10. 基于SqlSugar的开发框架循序渐进介绍(14)-- 基于Vue3+TypeScript的全局对象的注入和使用

    刚完成一些前端项目的开发,腾出精力来总结一些前端开发的技术点,以及继续完善基于SqlSugar的开发框架循序渐进介绍的系列文章,本篇随笔主要介绍一下基于Vue3+TypeScript的全局对象的注入和 ...

随机推荐

  1. Spring mvc源码分析系列--Servlet的前世今生

    Spring mvc源码分析系列--Servlet的前世今生 概述 上一篇文章Spring mvc源码分析系列--前言挖了坑,但是由于最近需求繁忙,一直没有时间填坑.今天暂且来填一个小坑,这篇文章我们 ...

  2. this硬绑定

    一.this显示绑定 this显示绑定,顾名思义,它有别于this的隐式绑定,而隐式绑定必须要求一个对象内部包含一个指向某个函数的属性(或者某个对象或者上下文包含一个函数调用位置),并通过这个属性间接 ...

  3. 关于history.back()、history.go()回退但无法刷新页面的问题

    window.history.back(); 这样确实可以做到后退的功能,但是项目中,常常并不只是后退就能完成需求,往往需要在后退的同时,刷新后退的页面信息,比如后退到首页同时刷新首页的最新数据,这样 ...

  4. 四、redis数据类型

    四.redis数据类型 redis可以理解成一个全局的大字典,key就是数据的唯一标识符.根据key对应的值不同,可以划分成5个基本数据类型. 1. string类型: 字符串类型,是 Redis 中 ...

  5. 创建.NET程序Dump的几种姿势

    当一个应用程序运行的有问题时,生成一个Dump文件来调试它可能会很有用.在Windows.Linux或Azure上有许多方法可以生成转储文件. Windows平台 dotnet-dump (Windo ...

  6. C# 9.0 添加和增强的功能【基础篇】

    一.记录(record) C# 9.0 引入了记录类型. 可使用 record 关键字定义一个引用类型,以最简的方式创建不可变类型.这种类型是线程安全的,不需要进行线程同步,非常适合并行计算的数据共享 ...

  7. Dubbo-聊聊通信模块设计

    前言 Dubbo源码阅读分享系列文章,欢迎大家关注点赞 SPI实现部分 Dubbo-SPI机制 Dubbo-Adaptive实现原理 Dubbo-Activate实现原理 Dubbo SPI-Wrap ...

  8. 京东云开发者|软件架构可视化及C4模型:架构设计不仅仅是UML

    软件系统架构设计的目标不在于设计本身,而在于架构设计意图的传达.图形化有助于在团队间进行高效的信息同步,但不同的图形化方式需要语义一致性和效率间实现平衡.C4模型通过不同的抽象层级来表达系统的静态结构 ...

  9. 棋盘覆盖(java实现)

    棋盘覆盖 问题描述 在一个2k×2k 个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘.在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘 ...

  10. mysql管理工具mysqladmin的使用

    1. 初始化密码 mysqladmin -uroot -p'password' password 'new-password' [root@controller3 ~]# yum -y install ...