Problem C: Longest Common Subsequence

Sequence 1:

Sequence 2:

Given two sequences of characters, print the length of the longest common subsequence of both sequences. For example, the longest common subsequence of the following two sequences:

abcdgh
aedfhr

is adh of length 3.

Input consists of pairs of lines. The first line of a pair contains the first string and the second line contains the second string. Each string is on a separate line and consists of at most 1,000 characters

For each subsequent pair of input lines, output a line containing one integer number which satisfies the criteria stated above.

Sample input

a1b2c3d4e
zz1yy2xx3ww4vv
abcdgh
aedfhr
abcdefghijklmnopqrstuvwxyz
a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0
abcdefghijklmnzyxwvutsrqpo
opqrstuvwxyzabcdefghijklmn

Output for the sample input

4
3
26
14

题意:给定两个序列,求最长公共子序列。

思路:dp中的LCS问题。。裸的很水。状态转移方程为

字符相同时: d[i][j] = d[i - 1][j - 1] + 1,不同时:d[i][j] = max(d[i - 1][j], d[i][j - 1])

代码:

#include <stdio.h>
#include <string.h> char a[1005], b[1005];
int d[1005][1005], i, j; int max(int a, int b) {
return a > b ? a : b;
}
int main() {
while (gets(a) != NULL) {
gets(b);
memset(d, 0, sizeof(d));
int lena = strlen(a);
int lenb = strlen(b);
for (i = 1; i <= lena; i ++)
for (j = 1; j <= lenb; j ++) {
if (a[i - 1] == b[j - 1]) {
d[i][j] = d[i - 1][j - 1] + 1;
}
else {
d[i][j] = max(d[i - 1][j], d[i][j - 1]);
}
}
printf("%d\n", d[lena][lenb]);
}
return 0;
}

UVA 10405 Longest Common Subsequence (dp + LCS)的更多相关文章

  1. UVA 10405 Longest Common Subsequence --经典DP

    最长公共子序列,经典问题.算是我的DP开场题吧. dp[i][j]表示到s1的i位置,s2的j位置为止,前面最长公共子序列的长度. 状态转移: dp[i][j] = 0                 ...

  2. UVA 10405 Longest Common Subsequence

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=16&p ...

  3. Longest Common Subsequence (DP)

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  4. Longest common subsequence(LCS)

    问题 说明该问题在生物学中的实际意义 Biological applications often need to compare the DNA of two (or more) different ...

  5. [UVa OJ] Longest Common Subsequence

    This is the classic LCS problem. Since it only requires you to print the maximum length, the code ca ...

  6. [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  9. 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm

    ''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...

随机推荐

  1. 关于 devbridge

    目前据我所知最好用的 autocomplete 插件就是 jquery-ui 的 autocomplete 以及 devbridge 的 autocomplete 插件. 我最终选择了 devbrid ...

  2. HDU 3339 In Action【最短路+01背包】

    题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=3339] In Action Time Limit: 2000/1000 MS (Java/Other ...

  3. Linux Shall命令入门

    Linux Shall命令入门 ifconfig                                            //查看ip信息 service network start   ...

  4. [AHOI2009]同类分布

    题目大意: 问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除. 思路: 数位DP. 极端情况下,每一位都是9,所以各位数字之和不超过9*18.(为了方便这里用了9*19) f[i][j] ...

  5. poj 1733 并查集+hashmap

    题意:题目:有一个长度 已知的01串,给出多个条件,[l,r]这个区间中1的个数是奇数还是偶数,问前几个是正确的,没有矛盾 链接:点我 解题思路:hash离散化+并查集 首先我们不考虑离散化:s[x] ...

  6. HDU 4612 Warm up tarjan 树的直径

    Warm up 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4612 Description N planets are connected by ...

  7. Codeforces Beta Round #5 A. Chat Server's Outgoing Traffic 水题

    A. Chat Server's Outgoing Traffic 题目连接: http://www.codeforces.com/contest/5/problem/A Description Po ...

  8. Percona-Toolkit学习之安装和配置

    http://blog.chinaunix.net/uid-26446098-id-3390779.html

  9. unity基础开发----unity游戏速度更快的简易检查表

    让游戏速度更快的简易检查表 保持顶点数在 200K 下面,针对 PC 时每帧应为 3M,主要取决于目标 GPU. 若使用内置着色器,请在移动 (Mobile) 或未点亮 (Unlit) 的类别中选择. ...

  10. /etc/fstab格式的问题

    [root@localhost etc]# cat fstab /dev/VolGroup00/LogVol00 /                       ext3    defaults    ...