Problem C: Longest Common Subsequence

Sequence 1:

Sequence 2:

Given two sequences of characters, print the length of the longest common subsequence of both sequences. For example, the longest common subsequence of the following two sequences:

abcdgh
aedfhr

is adh of length 3.

Input consists of pairs of lines. The first line of a pair contains the first string and the second line contains the second string. Each string is on a separate line and consists of at most 1,000 characters

For each subsequent pair of input lines, output a line containing one integer number which satisfies the criteria stated above.

Sample input

a1b2c3d4e
zz1yy2xx3ww4vv
abcdgh
aedfhr
abcdefghijklmnopqrstuvwxyz
a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z0
abcdefghijklmnzyxwvutsrqpo
opqrstuvwxyzabcdefghijklmn

Output for the sample input

4
3
26
14

题意:给定两个序列,求最长公共子序列。

思路:dp中的LCS问题。。裸的很水。状态转移方程为

字符相同时: d[i][j] = d[i - 1][j - 1] + 1,不同时:d[i][j] = max(d[i - 1][j], d[i][j - 1])

代码:

#include <stdio.h>
#include <string.h> char a[1005], b[1005];
int d[1005][1005], i, j; int max(int a, int b) {
return a > b ? a : b;
}
int main() {
while (gets(a) != NULL) {
gets(b);
memset(d, 0, sizeof(d));
int lena = strlen(a);
int lenb = strlen(b);
for (i = 1; i <= lena; i ++)
for (j = 1; j <= lenb; j ++) {
if (a[i - 1] == b[j - 1]) {
d[i][j] = d[i - 1][j - 1] + 1;
}
else {
d[i][j] = max(d[i - 1][j], d[i][j - 1]);
}
}
printf("%d\n", d[lena][lenb]);
}
return 0;
}

UVA 10405 Longest Common Subsequence (dp + LCS)的更多相关文章

  1. UVA 10405 Longest Common Subsequence --经典DP

    最长公共子序列,经典问题.算是我的DP开场题吧. dp[i][j]表示到s1的i位置,s2的j位置为止,前面最长公共子序列的长度. 状态转移: dp[i][j] = 0                 ...

  2. UVA 10405 Longest Common Subsequence

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=16&p ...

  3. Longest Common Subsequence (DP)

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  4. Longest common subsequence(LCS)

    问题 说明该问题在生物学中的实际意义 Biological applications often need to compare the DNA of two (or more) different ...

  5. [UVa OJ] Longest Common Subsequence

    This is the classic LCS problem. Since it only requires you to print the maximum length, the code ca ...

  6. [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  9. 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm

    ''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...

随机推荐

  1. [webpack] devtool里的7种SourceMap[转]

    modle: development cheap-source-map debug 不太方便,不是以原来的文件的形式cheap-module-source-map 可以 debugcheap-modu ...

  2. 深入浅出JDBC-快速入门

    一.目录 二.概述 简述 JDBC是什么?JDBC英文名为:Java Data Base Connectivity(Java数据库连接),官方解释它是Java编程语言和广泛的数据库之间独立于数据库的连 ...

  3. PHP session过期机制和配置

    问题:使用PHP session时会遇到明明超过了session过期时间,但session依然完好无损的活着,让人头大. 其实仔细看一下php.ini关于PHP session回收机制就一目了然了. ...

  4. Ubuntu下gcc多版本共存和版本切换

    https://my.oschina.net/u/2306127/blog/538139 摘要: Ubuntu系统使用的gcc版本随着发布版本的不同而不同,在编译android系统时不同的版本推荐用不 ...

  5. [js插件]分享一个文章内容信息提示插件Colortip

    引用 项目中需要一个信息提示的功能,就上网找了一个插件,发现colortip实现比较简单,就定了这个插件. 实现过程 官网:http://tutorialzine.com/2010/07/colort ...

  6. 剑客vs刀客 Java vs .NET

    刀,无鞘的刀,重三十六斤六两三分,刀重而不大,重而不笨,千年寒铁精炼而成,刀身颀长,刀背轻薄,锋利异常,刀身桔黄色,隐隐泛着青色,刀面嵌龙凤图案,似龙吟,似凤鸣.刀柄带有两环,轻轻撞击会发出" ...

  7. 进程上下文VS中断上下文

    转载:http://www.cnblogs.com/zzx1045917067/archive/2012/12/19/2824552.html 内核空间和用户空间是现代操作系统的两种工作模式,内核模块 ...

  8. Jolokia

    Jolokia 是一个用来访问远程 JMX MBeans 的崭新方法,与 JSR-160 连接器不同的是,它使用基于 HTTP 的 JSON 格式作为通讯协议,提供 JMX 批量操作等.需要第三方ja ...

  9. [Android Pro] 有关Broadcast作为内部类时注册的一些问题

    很经常Broadcast都会写成一个Activity或者Service的内部类.这时候的注册和普通有点小区别. 有两种情况 1.假如是再Manifest文件里面静态注册的话,需要注意. ex: < ...

  10. nose的setup和teardown

    参考:http://blog.csdn.net/linda1000/article/details/8533349 1.模块的setUp和tearDown def setUp(): print &qu ...