[BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布
Time Limit: 50 Sec Memory Limit: 64 MB
Submit: 1635 Solved: 728
[Submit][Status][Discuss]Description
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数。Input
Output
Sample Input
10 19Sample Output
3HINT
【约束条件】1 ≤ a ≤ b ≤ 10^18
Source
设计好状态后就是比较简单的数位DP了,实际上数位DP就是记录了中间状态的搜索。
首先枚举各个位上的数之和为mod,然后它的贡献是所有数位和为mod且这个数本身%mod=0的数的个数,设f[i][sm][md]表示考虑从高到低前i位,前i位的数位和为sm,数本身%mod=md的数的合法个数,最终贡献为f[len][0][0]。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (ll i=l; i<=r; i++)
typedef long long ll;
using namespace std; ll L,R,ans,mod,a[21],P[21],f[21][170][170]; ll dfs(ll x,ll sm,ll md,ll lim){
if (!x) return (sm==mod) && !md;
if (!lim && ~f[x][sm][md]) return f[x][sm][md];
ll res=0;
rep(j,0,(lim?a[x]:9)) res+=dfs(x-1,sm+j,(j*P[x-1]+md)%mod,lim && j==a[x]);
if (!lim) f[x][sm][md]=res;
return res;
} ll calc(ll n){
if (!n) return 0;
memset(f,-1,sizeof(f));
P[0]=1; rep(i,1,18) P[i]=(P[i-1]*10)%mod;
ll len=0; while (n) a[++len]=n%10,n/=10;
return dfs(len,0,0,1);
} int main(){
freopen("bzoj1799.in","r",stdin);
freopen("bzoj1799.out","w",stdout);
scanf("%lld%lld",&L,&R);
for (mod=1; mod<=162; mod++) ans+=calc(R)-calc(L-1);
printf("%lld\n",ans);
return 0;
}
[BZOJ1799][AHOI2009]同类分布(数位DP)的更多相关文章
- BZOJ1799 self 同类分布 数位dp
BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...
- [luogu4127 AHOI2009] 同类分布 (数位dp)
传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...
- BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- bzoj1799同类分布——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...
- BZOJ 1799 同类分布(数位DP)
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
随机推荐
- 洛谷 1.5.1 Number Triangles 数字金字塔
Description 考虑在下面被显示的数字金字塔. 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大. 每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 ...
- [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)
[洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...
- Windows Live Writer博客草稿迁移的一种解决方案
作为一个苦逼的码农,喜欢写博客做总结是很正常的事,写博客写的久的人都接触过各种客户端工具,最流行的就是Windows Live Writer了. 作为一个苦逼的码农,换电脑也是很经常的事,经常会出现一 ...
- linux下subversion的安装
第一章 安装 这里以RHEL5下安装subversion-1.6.6,为例 1. 下载源码包 在http://archive.apache.org/dist/subversion/网站下载 subve ...
- [转载]Android中Bitmap和Drawable
一.相关概念 1.Drawable就是一个可画的对象,其可能是一张位图(BitmapDrawable),也可能是一个图形(ShapeDrawable),还有可能是一个图层(LayerDrawable) ...
- Workqueue机制的实现
Workqueue机制中定义了两个重要的数据结构,分析如下: cpu_workqueue_struct结构.该结构将CPU和内核线程进行了绑定.在创建workqueue的过程中,Linux根据当前系统 ...
- python之jsonpath的使用
import json import jsonpath import requests url="https://www.lagou.com/lbs/getAllCitySearchLabe ...
- easyui datagrid 去掉 全选checkbox
在加载 表格的时候添加事件:onLoadSuccess 在事件中写入下面句,用空代替原有HTML 达到取消效果. $(".datagrid-header-check").html( ...
- css预处理scss环境配置
css 预处理器 CSS 预处理器用一种专门的编程语言,进行 Web css编码,然后再编译成正常的 CSS 文件,以供项目使用:说简单点就是在某个环境下写css 可以写变量.表达式.嵌套等,在通过该 ...
- 工作当中遇到的ssh错误
[root@1bcc1d3f9666 externalscripts]# /usr/sbin/sshd Could not load host key: /etc/ssh/ssh_host_rsa_k ...