【UOJ 34】 多项式乘法 (FFT)
【题意】 给你两个多项式,请输出乘起来后的多项式。
先打一个递归版本的模板。。。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<memory.h>
#define N 400010
using namespace std;
const double pi=acos(-1); struct P
{
double x,y;
P() {x=y=0;}
P(double x,double y):x(x),y(y){}
}a[N],b[N]; P operator + (P x,P y) {return P(x.x+y.x,x.y+y.y);}
P operator - (P x,P y) {return P(x.x-y.x,x.y-y.y);}
P operator * (P x,P y) {return P(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);} void fft(P *s,int n,int t)
{
if(n==1) return;
P a0[n>>1],a1[n>>1];
for(int i=0;i<=n;i+=2) a0[i>>1]=s[i],a1[i>>1]=s[i+1];
fft(a0,n>>1,t);fft(a1,n>>1,t);
P wn(cos(2*pi/n),t*sin(2*pi/n)),w(1,0);
for(int i=0;i<(n>>1);i++,w=w*wn) s[i]=a0[i]+w*a1[i],s[i+(n>>1)]=a0[i]-w*a1[i];
//w^2=(w+(n>>1))^2 均匀分布在圆上面?
//w[i^2,n]=w[i/2,n/2] 折半引理
//s[i]=a0’(i^2)+i*a1’(i^2)=a0(i)+i*a1(i)
//s[i+n>>1]=a0’((i+n>>1)^2)+i*a1’((i+n>>1)^2)=a0’(i^2)-i*a1’(i^2)
//因为i=-(i+n>>1) 折半引理
} int main()
{
int n,m,nn;
scanf("%d%d",&n,&m);
memset(a,0,sizeof(a));memset(b,0,sizeof(b));
for(int i=0;i<=n;i++) scanf("%lf",&a[i].x);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].x);
nn=1;while (nn<=n+m) nn<<=1;
fft(a,nn,1);fft(b,nn,1);
for(int i=0;i<=nn;i++) a[i]=a[i]*b[i];
fft(a,nn,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].x/nn+0.5));
return 0;
}
2017-03-04 08:51:27
【UOJ 34】 多项式乘法 (FFT)的更多相关文章
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34: 多项式乘法(FFT模板题)
关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- LintCode 373: Partition Array
LintCode 373: Partition Array 题目描述 分割一个整数数组,使得奇数在前偶数在后. 样例 给定[1, 2, 3, 4],返回[1, 3, 2, 4]. Thu Feb 23 ...
- 【BZOJ】4129: Haruna’s Breakfast 树分块+带修改莫队算法
[题意]给定n个节点的树,每个节点有一个数字ai,m次操作:修改一个节点的数字,或询问一条树链的数字集合的mex值.n,m<=5*10^4,0<=ai<=10^9. [算法]树分块+ ...
- vue--------脚手架vue-cli搭建
今天在看公司的项目的时候,用到的是Vue框架,哈哈,Vue已经火好久了,想必大家也晓得哈,这里宝宝就不瞎渣渣了~ 由于宝宝已经三个月木有看过代码了,所以对新公司的很多的架构和代码都是懵逼的,再加上宝宝 ...
- textarea输入框随内容撑开高度
原文链接 方法一(jquery): $('textarea').each(function () { this.setAttribute('style', 'height:' + (this.scr ...
- 遍历目录大小——php经典实例
遍历目录大小——php经典实例 <?php function dirSize($dir){ //定义大小初始值 $sum=; //打开 $dd=opendir($dir); //遍历 while ...
- okhttp3使用详解
http://blog.csdn.net/itachi85/article/details/51190687
- KKT条件和拉格朗日乘子法详解
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 ...
- 011 CountDownLatch,CyclicBarrier和Semaphore
CountDownLatch(闭锁,有译倒计数,锁寄存): public class CountDownLatchTest { /*** 比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此 ...
- C语言地址对齐(转)--网络编程之结构体大小的计算
什么是地址对齐? 现代计算机中内存空间都是按照字节(byte)划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定变量的时候经常在特定的内存地址访问,这就需要各类型数 ...
- js中startWith、endWith 函数不能在任何浏览器兼容的问题
在做js测试的时候用到了startsWith函数,但是他并不是每个浏览器都有的,所以我们一般要重写一下这个函数,具体的用法可以稍微总结一下 在有些浏览器中他是undefined 所以我们可以这样的处理 ...