BZOJ1690 Usaco2007 Dec 奶牛的旅行 【01分数规划】
BZOJ1690 Usaco2007 Dec 奶牛的旅行
题目描述
作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天。旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇。 很幸运地,奶牛们找到了一张详细的城市地图,上面标注了城市中所有L(2 <= L <= 1000)座标志性建筑物(建筑物按1..L顺次编号),以及连接这些建筑物的P(2 <= P <= 5000)条道路。按照计划,那天早上Farmer John会开车将奶牛们送到某个她们指定的建筑物旁边,等奶牛们完成她们的整个旅行并回到出发点后,将她们接回农场。由于大城市中总是寸土寸金,所有的道路都很窄,政府不得不把它们都设定为通行方向固定的单行道。 尽管参观那些标志性建筑物的确很有意思,但如果你认为奶牛们同样享受穿行于大城市的车流中的话,你就大错特错了。与参观景点相反,奶牛们把走路定义为无趣且令她们厌烦的活动。对于编号为i的标志性建筑物,奶牛们清楚地知道参观它能给自己带来的乐趣值FiFi (1 <= FiFi <= 1000)。相对于奶牛们在走路上花的时间,她们参观建筑物的耗时可以忽略不计。 奶牛们同样仔细地研究过城市中的道路。她们知道第i条道路两端的建筑物 L1iL1i和L2iL2i(道路方向为L1iL1i -> L2iL2i),以及她们从道路的一头走到另一头所需要的时间TiTi(1 <= TiTi <= 1000)。 为了最好地享受她们的休息日,奶牛们希望她们在一整天中平均每单位时间内获得的乐趣值最大。当然咯,奶牛们不会愿意把同一个建筑物参观两遍,也就是说,虽然她们可以两次经过同一个建筑物,但她们的乐趣值只会增加一次。顺便说一句,为了让奶牛们得到一些锻炼,Farmer John要求奶牛们参观至少2个建筑物。 请你写个程序,帮奶牛们计算一下她们能得到的最大平均乐趣值。
输入格式
第1行: 2个用空格隔开的整数:L 和 P
第2..L+1行: 第i+1行仅有1个整数:F_i * 第L+2..L+P+1行: 第L+i+1行用3个用空格隔开的整数:L1_i,L2_i以及T_i, 描述了第i条道路。
输出格式
第1行: 输出1个实数,保留到小数点后2位(直接输出,不要做任何特殊的取 整操作),表示如果奶牛按题目中描述的一系列规则来安排她们的旅 行的话,她们能获得的最大平均乐趣值
样例输入
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
样例输出
6.00
输出说明:
如果奶牛选择1 -> 2 -> 3 -> 5 -> 1的旅行路线,她们能得到的总乐趣值为60,为此她们得花费10单位的时间在走路上。于是她们在这次旅行中的平均乐趣值为6。如果她们走2 -> 3 -> 5 -> 2的路线,就只能得到30/6 = 5的平均乐趣值。并且,任何去参观建筑物4的旅行路线的平均乐趣值都没有超过4。
#include<bits/stdc++.h>
using namespace std;
#define N 5010
#define INFF 1e6
int n,m,tot,head[N];
int u[N],v[N],vis[N];
double w[N],len[N],dis[N];
bool flag;
struct Edge{int v,next,id;}E[N];
void add(int u,int v,int id){
E[++tot]=(Edge){v,head[u],id};
head[u]=tot;
}
int SPFA(int x,double val){
vis[x]=1;
for(int i=head[x];i;i=E[i].next){
int y=E[i].v;double tmp=w[y]-len[E[i].id]*val;
if(dis[x]+tmp>dis[y]){
if(vis[y])return 1;
else{
dis[y]=dis[x]+tmp;
if(SPFA(y,val))return 1;
}
}
}
vis[x]=0;
return 0;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%lf",&w[i]);
for(int i=1;i<=m;i++){
scanf("%d%d%lf",&u[i],&v[i],&len[i]);
add(u[i],v[i],i);
}
double l=0.0,r=INFF;
for(int p=1;p<=30;p++){
double mid=(l+r)/2;
for(int i=1;i<=n;i++)dis[i]=-INFF,vis[i]=0;
dis[1]=0;
if(!SPFA(1,mid))r=mid;
else l=mid;
}
printf("%.2lf",l);
return 0;
}
BZOJ1690 Usaco2007 Dec 奶牛的旅行 【01分数规划】的更多相关文章
- bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)
PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...
- 【BZOJ】1690: [Usaco2007 Dec]奶牛的旅行(分数规划+spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=1690 第一题不是水题的题.. 分数规划.. T-T 百度吧..http://blog.csdn.ne ...
- bzoj1690:[Usaco2007 Dec]奶牛的旅行 (分数规划 && 二分 && spfa)
用dfs优化的spfa判环很快啦 分数规划的题目啦 二分寻找最优值,用spfa判断能不能使 Σ(mid * t - p) > 0 最优的情况只能有一个环 因为如果有两个环,两个环都可以作为奶牛的 ...
- BZOJ1690: [Usaco2007 Dec]奶牛的旅行
1690: [Usaco2007 Dec]奶牛的旅行 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 552 Solved: 286[Submit][St ...
- [bzoj1690] [Usaco2007 Dec] 奶牛的旅行 (最大比率环)
题目 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城市地图,上面标注了 ...
- 【bzoj1690】[Usaco2007 Dec]奶牛的旅行 分数规划+Spfa
题目描述 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城市地图,上面标 ...
- bzoj 1690: [Usaco2007 Dec]奶牛的旅行【01分数规划+spfa】
把add传参里的double写成int我也是石乐志-- 首先这个东西长得就很01分数规划 然后我不会证为什么没有8字环,我们假装他没有 那么设len为环长 \[ ans \leq \frac{\sum ...
- 【BZOJ】1690: [Usaco2007 Dec]奶牛的旅行
[算法]01分数规划-最优比率环 [题意]给定有向图,点有收益,边有代价,重复经过的话收益不叠加而代价叠加,求从任意点开始最后回归该点的(收益/代价)最大. [题解] 和普通的分数规划不同,这里的方案 ...
- 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)
题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...
随机推荐
- 分析java进程假死状况
摘自: http://www.myexception.cn/internet/2044496.html 分析java进程假死情况 1 引言 1.1 编写目的 为了方便大家以后发现进程假死的时候能够正常 ...
- C和C#两种方式实现邮件的简单接收
本文的主要内容是通过两种方式实现简单邮件的接收,一种方式是通过C语言实现,另一种是通过C#实现的, 两种方式在实现上有许多的不同之处,但是本质上都是一样的. 一,C语言实现方式 C语言接收邮件的步骤: ...
- Eclipse关联JDK源码
1. http://blog.csdn.net/weiwangchao_/article/details/25960961 2. 1.点 "window">"Pre ...
- C#显示接口实现和隐式接口实现
在项目中可能会遇到显示接口实现和隐式接口实现.什么意思呢?简单来说使用接口名作为方法名的前缀,这称为“显式接口实现”:传统的实现方式,称为“隐式接口实现”.隐式接口实现如下: interface IS ...
- Vue 及框架响应式系统原理
个人bolg地址 全局概览 Vue运行内部运行机制 总览图: 初始化及挂载 在 new Vue()之后. Vue 会调用 _init 函数进行初始化,也就是这里的 init 过程,它会初始化生命周期. ...
- HDU - 59562016ACM/ICPC亚洲区沈阳站I - The Elder 树上斜率优化dp
题意:给定上一棵树,然后每条边有一个权值,然后每个点到 1 的距离有两种,第一种是直接回到1,花费是 dist(1, i)^2,还有另一种是先到另一个点 j,然后两从 j 向1走,当然 j 也可以再向 ...
- Codeforces Round #349 (Div. 2)
第一题直接算就行了为了追求手速忘了输出yes导致wa了一发... 第二题技巧题,直接sort,然后把最大的和其他的相减就是构成一条直线,为了满足条件就+1 #include<map> #i ...
- LabVIEW之生产者/消费者模式--队列操作
LabVIEW之生产者/消费者模式--队列操作 彭会锋 本文章主要是对学习LabVIEW之生产者/消费者模式的学习笔记,其中涉及到同步控制技术-队列.事件.状态机.生产者-消费者模式,这几种技术在在本 ...
- Verilog HDL Test Bench
As digital systems becomes more complex,it becomes increasingly important to verify the functionalit ...
- dva-loading使用方法
1. 下载dva-loading npm install dva-loading --save 2. 导入并使用dva-loading import createLoading from 'dva-l ...