BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur


Description

In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X. Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once). As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ’s paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.

给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1)

Input

The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000). The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.

Output

A single line indicating the maximum number of distinct fields Bessie

can visit along a route starting and ending at field 1, given that she can

follow at most one path along this route in the wrong direction.

Sample Input

7 10

1 2

3 1

2 5

2 4

3 7

3 5

3 6

6 5

7 2

4 7

Sample Output

6


给你一张有向图图,有一次走反向边的机会

然后问你从1出发回到1最多经过多少个点


首先想到的是tarjan缩点,一个强连通分量的大小显然只要进入了就可以全部吃下来

然后我们得到了一个DAG

考虑在这上面走一圈,有一条边可以反向做多能经过多少边

首先我们显然不能枚举那一个边是反向的,但是我们可以排除这个边随便考虑一下

我们正反建图,然后发现对于一条边(u−&gt;v)" role="presentation" style="position: relative;">(u−>v)(u−>v),把这条边反向的贡献就是d[1−&gt;v]正向+d[u−&gt;1]反向" role="presentation" style="position: relative;">d[1−>v]正向+d[u−>1]反向d[1−>v]正向+d[u−>1]反向,然后我们就分别在正反的图上进行DP,也可以说是跑最长路

然后最后统计贡献就好了


tips:一定在DP的时候吧初值设为-INF,否则累计的时候会出事情,要考虑无法到达的情况


#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define pi pair<int,int>
#define INF 0x3f3f3f3f
int cnt_scc,tot=0,n,m;
int dfn[N],low[N],vis[N]={0};
int siz[N]={0},head[N]={0};
int bel[N];
struct Edge{int u,v,next;}E[N<<1];
stack<int> s;
void add(int u,int v){
E[++tot]=(Edge){u,v,head[u]};
head[u]=tot;
}
int tip=0;
void tarjan(int u){
dfn[u]=low[u]=++tip;
vis[u]=1;
s.push(u);
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(!dfn[v])tarjan(v),low[u]=min(low[u],low[v]);
else if(vis[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
cnt_scc++;
while(s.top()!=u){
bel[s.top()]=cnt_scc;
vis[s.top()]=0;
s.pop();
}
vis[s.top()]=0;
bel[s.top()]=cnt_scc;
s.pop();
}
}
map<pi,int> mp;
struct DAG{
Edge E[N<<1];
bool inq[N];
int head[N],tot;
int dp[N],ru[N];
DAG(){
memset(head,0,sizeof(head));
for(int i=0;i<N;i++)dp[i]=-INF;
tot=0;
}
void add(int u,int v){
E[++tot]=(Edge){u,v,head[u]};
head[u]=tot;
}
void solve(){
queue<int> q;
q.push(bel[1]);
dp[bel[1]]=0;
while(!q.empty()){
int u=q.front();q.pop();
inq[u]=0;
for(int i=head[u];i;i=E[i].next){
int v=E[i].v;
if(dp[v]<dp[u]+siz[v]){
dp[v]=dp[u]+siz[v];
if(!inq[v])q.push(v),inq[v]=1;
}
}
}
}
}g1,g2;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v;scanf("%d%d",&u,&v);
add(u,v);
}
for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
for(int i=1;i<=n;i++)siz[bel[i]]++;
for(int i=1;i<=tot;i++){
int u=bel[E[i].u],v=bel[E[i].v];
if(u==v)continue;
if(mp[(pi){u,v}]||mp[(pi){v,u}])continue;
g1.add(u,v);
g2.add(v,u);
mp[(pi){u,v}]=mp[(pi){v,u}]=1;
}
g1.solve();
g2.solve();
int ans=0;
for(int i=1;i<=tot;i++){
int u=bel[E[i].u],v=bel[E[i].v];
ans=max(ans,g1.dp[v]+g2.dp[u]);
}
ans+=siz[bel[1]];
printf("%d",ans);
return 0;
}

BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*的更多相关文章

  1. bzoj3887: [Usaco2015 Jan]Grass Cownoisseur

    题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...

  2. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  3. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

  4. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  5. [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp

    [Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...

  6. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  7. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  8. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  9. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

随机推荐

  1. 安装GoMap

    参考:https://github.com/ehrudxo/GoMap 1.依赖go包安装 gorm包安装 直接在github首页搜索gorm,找到对应的gorm包: 然后打开本机cmd命令行窗口,切 ...

  2. nlp基本知识点(不断更新)

    1.精确率与召回率 召回率也称为查全率,指的是:你查询到的相关数目/(你查询到的相关的数目+你没有查询到的相关的数目). 精确率: A/A+B 召回率:A/A+C 再比如: 我 是 中国人 这里正确的 ...

  3. Springboot依赖注入 Service类中使用静态变量

    @Component public class ServerHandler extends IoHandlerAdapter { @Autowired protected HealthDataServ ...

  4. C# WebSocket解析(收发数据包、分片超长包处理)

    using System; using System.Collections.Generic; using System.Linq; using System.Security.Cryptograph ...

  5. php redis 秒杀demo

    $redis = new Redis(); $redis->connect("127.0.0.1", "6379"); $redis->select ...

  6. JavaScript权威指南--客户端存储

    客户端存储web应用允许使用浏览器提供的API实现将数据存储在用户电脑上. 客户端存储遵循“同源策略”,因此不同站点的页面是无法读取对于存储的数据.而同一站点的不同的页面之间是可以互相共享存储数据的. ...

  7. Centos服务器被挂马的一次抓马经历

    转载:http://blog.csdn.net/qq_21439971/article/details/54631440 今天早上五点,收到监控宝的警告短信,说是网站M无法访问了.睡的正香,再说网站所 ...

  8. git 提交作业流程

    git 提交作业流程,主要分为4个步骤 # 拉取远程git最新版本到本地,每次都可以先执行这条命令,因为会有其他同学更新仓库 git pull # add需要上传的文件,那个文件修改或者新增的,就ad ...

  9. Android------第一次启动出现白屏或者黑屏

    APP开发中,第一次运行启动app时,会出现一会儿的黑屏或者白屏才进入Activity的界面显示. 当打开一个Activity时,如果这个Activity所属Application还没有在运行, 系统 ...

  10. SpringBoot下的值注入

    在我们实际开发项目中,经常会遇到一些常量的配置,比如url,暂时不会改变的字段参数,这个时候我们最好是不要直接写死在代码里的,因为这样编写的程序,应用扩展性太差了,我们可以直接写在配置文件中然后通过配 ...