本文基于http://keras-cn.readthedocs.io/en/latest/for_beginners/concepts/提及的知识总结,感谢作者做出的贡献,如有侵权将立即删除

符号计算

Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。

因此,这也使得Keras的编程与传统的Python代码有所差别。笼统的说,符号主义的计算首先定义各种变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。建立好的计算图需要编译以确定其内部细节,然而,此时的计算图还是一个“空壳子”,里面没有任何实际的数据,只有当你把需要运算的输入放进去后,才能在整个模型中形成数据流,从而形成输出值。

Keras的模型搭建形式就是这种方法,在你搭建Keras模型完毕后,你的模型就是一个空壳子,只有实际生成可调用的函数后(K.function),输入数据,才会形成真正的数据流。

使用计算图的语言,如Theano,以难以调试而闻名,当Keras的Debug进入Theano这个层次时,往往也令人头痛。没有经验的开发者很难直观的感受到计算图到底在干些什么。尽管很让人头痛,但大多数的深度学习框架使用的都是符号计算这一套方法,因为符号计算能够提供关键的计算优化、自动求导等功能。

张量

张量,或tensor

规模最小的张量是0阶张量,即标量,也就是一个数。

当我们把一些数有序的排列起来,就形成了1阶张量,也就是一个向量

如果我们继续把一组向量有序的排列起来,就形成了2阶张量,也就是一个矩阵

把矩阵摞起来,就是3阶张量,我们可以称为一个立方体,具有3个颜色通道的彩色图片就是一个这样的立方体

把立方体摞起来,好吧这次我们真的没有给它起别名了,就叫4阶张量了,不要去试图想像4阶张量是什么样子,它就是个数学上的概念。

张量的阶数有时候也称为维度,或者轴,轴这个词翻译自英文axis。譬如一个矩阵[[1,2],[3,4]],是一个2阶张量,有两个维度或轴,沿着第0个轴(为了与python的计数方式一致,本文档维度和轴从0算起)你看到的是[1,2],[3,4]两个向量,沿着第1个轴你看到的是[1,3],[2,4]两个向量。

要理解“沿着某个轴”是什么意思,不妨试着运行一下下面的代码:

import numpy as np

a = np.array([[1,2],[3,4]])
sum0 = np.sum(a, axis=0)
sum1 = np.sum(a, axis=1) print sum0
print sum1

data_format

这是一个无可奈何的问题,在如何表示一组彩色图片的问题上,Theano和TensorFlow发生了分歧,'th'模式,也即Theano模式会把100张RGB三通道的16×32(高为16宽为32)彩色图表示为下面这种形式(100,3,16,32),Caffe采取的也是这种方式。第0个维度是样本维,代表样本的数目,第1个维度是通道维,代表颜色通道数。后面两个就是高和宽了。这种theano风格的数据组织方法,称为“channels_first”,即通道维靠前。

而TensorFlow,的表达形式是(100,16,32,3),即把通道维放在了最后,这种数据组织方式称为“channels_last”。

Theano : (100,3,16,32)  "channels_first"

TensorFlow : (100,16,32,3) "channels_last"

函数式模型

Keras 0.x的版本中,存在两种模型:

1.一种叫Sequential(序贯模型),单输入单输出,层与层之间只有相邻关系,没有跨层连接,编译速度较快。

2.第二种叫Graph(图模型),多输入多输出,存在跨层连接,编译速度较慢。

序贯模型是图模型的一种特殊情况。

Keras 1.x 和 2.x版本中,Graph(图模型)被废弃,增加了“functional model API”其利用“函数式编程风格”。

batch

深度学习的优化算法,即梯度下降,一般来说有两种方式
1.Batch gradient descent 遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度,这种方式每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习。
2.Stochastic gradient descent 每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,这种方式速度比较快,但是收敛性不好,可能在最优点附近晃动,hit不到最优点。两次参数的更新也有可能互相抵消掉,造成目标函数震荡比较剧烈。
为了克服两种方法的缺点,现一般采取一种折中手段,mini-batch gradient decent,小批的梯度下降,这种方法把数据分为若干批,按批来更新参数,一批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性。另一方面,分批的数据的样本数相比于整个数据集来说小了很多,计算量也不是很大。Keras中用的优化器SGD是stochastic gradient descent的缩写,但不代表是一个样本就更新一回,还是基于mini-batch的。

epochs

epochs指的就是训练过程中数据将被“轮”多少次

Keras学习-1的更多相关文章

  1. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

  2. Keras 学习之旅(一)

    软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...

  3. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  4. 【干货】Keras学习资源汇总

    目录: Keras简介 Keras学习手册 Keras学习视频 Keras代码案例 Keras&NLP Keras&CV Keras项目 一.Keras简介 Keras是Python中 ...

  5. Keras学习环境配置-GPU加速版(Ubuntu 16.04 + CUDA8.0 + cuDNN6.0 + Tensorflow)

    本文是个人对Keras深度学习框架配置的总结,不周之处请指出,谢谢! 1. 首先,我们需要安装Ubuntu操作系统(Windows下也行),这里使用Ubuntu16.04版本: 2. 安装好Ubunt ...

  6. Keras学习笔记

    Keras基于Tensorflow和Theano.作为一个更高级的框架,用其编写网络更加方便.具体流程为根据设想的网络结构,使用函数式模型API逐层构建网络即可,每一层的结构都是一个函数,上一层的输出 ...

  7. Keras学习笔记(完结)

    使用Keras中文文档学习 基本概念 Keras的核心数据结构是模型,也就是一种组织网络层的方式,最主要的是序贯模型(Sequential).创建好一个模型后就可以用add()向里面添加层.模型搭建完 ...

  8. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  9. 【Keras学习】Sequential模型

    序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...

  10. Keras学习笔记1--基本入门

    """ 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...

随机推荐

  1. const成员或者引用成员必须使用构造函数初始化列表的方式

    #include<iostream.h> class A { const int a; int b; }; void main() { A obja; }编译出现如下错误:error C2 ...

  2. js和jquery获取屏幕的高度

    Javascript: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.b ...

  3. windows下端口占用解决方法-查看和杀死占用端口进程

    在Windows下启动程序时有时会遇到端口被占用的情况,由于一个端口同时只能运行一个进程,所以要想启动新的程序就要先把占用该端口的进程给kill掉,具体的命令分为以下三步, 以杀死占用了80端口的进程 ...

  4. @Bean 小知识

    先说结论 @Bean 可以用在任意方法上. -- 也可以用在注解上面. @Bean 仅在Spring创建bean时起作用. 这应该算一个小技巧,在一个平常类(非@Configuration class ...

  5. javascript年月日日期筛选控件

    来源:http://www.sucaihuo.com/js/1158.html demo:http://www.sucaihuo.com/jquery/11/1158/demo/

  6. (转)有关Queue队列

    Queue Queue是python标准库中的线程安全的队列(FIFO)实现,提供了一个适用于多线程编程的先进先出的数据结构,即队列,用来在生产者和消费者线程之间的信息传递 基本FIFO队列 clas ...

  7. SQL SERVER 服务启动失败

    好久没用SQL SERVER了.今天启动SQL,发现服务启动失败.报错例如以下:--错误发生 1069-(因为登录失败而无法启动服务.) .百度一下,解决方式例如以下: 请按下列步骤操作: 1.右键单 ...

  8. iOS开发之--最简单的导航按钮更换方法/导航颜色的改变

    有很多时候,我们需要用到导航,那么更换导航的时候,是在那用那修改,还是自定义一个导航,或者是声明一个代理方法,经过查资料和对导航属性的一些了解,用一种方法最为简单,就是在入口类里面添加一个方法,调用偏 ...

  9. js获取格式化后的当前时间

    代码如下: function getFormatDate() { var day=new Date(); var Year=0; var Month=0; var Day=0; var Hour = ...

  10. golang中context包学习

    摘要 go语言中goroutine之间的关联关系,缺乏维护,在erlang中有专门的机制来保障新开仟程的生命周期, 在go语言中,只能通过channel + select来实现,但不够直观,感觉很绕. ...