HDU 1521 排列组合 (母函数)
Problem Description
有n种物品,并且知道每种物品的数量。要求从中选出m件物品的排列数。例如有两种物品A,B,并且数量都是1,从中选2件物品,则排列有"AB","BA"两种。
Input
每组输入数据有两行,第一行是二个数n,m(1<=m,n<=10),表示物品数,第二行有n个数,分别表示这n件物品的数量。
Output
对应每组数据输出排列数。(任何运算不会超出2^31的范围)
Sample Input`
2 2
1 1`
Sample Output
2
首先补充一下母函数的基本知识:
对于某个数列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。母函数主要应用于求解组合数、排列数、递推关系通项公式等。
对于这个多项式乘法:
可以得出的结论有:
x的系数是a1,a2,…an的单个组合的全体
x^2的系数是a1,a2,…an的两个组合的全体
·······
n .x^n的系数是a1,a2,….an的n个组合的全体(只有1个)进一步可以得到:
我们定义母函数
对于序列a0,a1,a2,…构造一函数:
称函数G(x)是序列a0,a1,a2,…的母函数。
第一种例子分析:
有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?
考虑用母函数来解决这个问题:
我们假设x表示砝码,x的指数表示砝码的重量,这样:
1个1克的砝码可以用函数1+1*x^1表示,
1个2克的砝码可以用函数1+1*x^2表示,
1个3克的砝码可以用函数1+1*x^3表示,
1个4克的砝码可以用函数1+1*x^4表示,
我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就有一个质量为2的砝码。
那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。
所以这里1+1x^2 = 1x^0 + 1x2,即表示2克的砝码有两种状态,不取或取,不取则为1x0,取则为1*x^2
把组合问题的加法法则和幂级数的乘幂对应起来
对于1+x^2,讨论x前面的系数的意义?
这里的系数表示状态数(方案数)
1+x2,也就是1x0 + 1x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)
所以,前面说的那句话的意义大家可以理解了吧?
几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:
(1+x)(1+x2)(1+x3)(1+x^4)
=(1+x+x2+x4)(1+x3+4+x^7)
=1 + x + x^2 + 2x^3 + 2x^4 + 2x^5+ 2x^6 + 2*x^7 + x^8 + x^9 + x^10
从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)
例如右端有2x5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。
故称出6克的方案数有2种,称出10克的方案数有1种 。
第二种例子分析
求用1分、2分、3分的邮票贴出不同数值的方案数:
大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。
以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;
即 :4=1+1+1+1=1+1+2=1+3=2+2
这里再引出两个概念"整数拆分"和"拆分数":
所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。
整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数。
下面是指数型母函数的定义:
对于上面的问题“假设有8个元素,其中a1重复3次,a2重复2次,a3重复3次。从中取r个组合,求其组合数。”:
(感谢 3Dnn 同学指出,下图的 28/3! 应该改为 26/3!)
本题就是指数型母函数的代表
题目分析
对于给出的n中物品,每种物品的个数给出,求从中取出m件物品构成的排列数
#include<stdio.h>
#include<string.h>
int jc[11]= {1,1,2,6,24,120,720,5040,40320,326880,3268800};
///数组用于存储从0到10的阶乘
int num[12];
double c1[110],c2[110];
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
for(int i=1; i<=n; i++)
{
scanf("%d",&num[i]);
}
for(int i=0; i<=num[1]; i++)
{
c1[i]=1.0/jc[i];///计算第一种物品存在不同个数的组合数
}
for(int i=2; i<=n; i++)///下面从第二种物品开始
{
for(int j=0; j<=m; j++)///目前已经存在的物品数,肯定小于m
{
for(int k=0; k<=num[i]&&k<=m; k++)///要从当前的第i种物品中取出来的个数
c2[j+k]+=c1[j]/jc[k];///最终形成的一个排列数
}
for(int j=0; j<=m; j++)
{
c1[j]=c2[j];///c1存储的是最终的确定值,c2在刷新计算
c2[j]=0;
}
}
printf("%.0lf\n",jc[m]*1.0*c1[m]);
}
}
HDU 1521 排列组合 (母函数)的更多相关文章
- HDU 1521 排列组合 指数型母函数
排列组合 Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status D ...
- Hdu 1521 排列组合
a1 n1 a2 n2 ... ak nkn=n1+n2+...+nk从n个数中选r个排列(不是组合噢)// 指数型母函数// 模板#include <iostream> #include ...
- hdu 1521 排列组合 —— 指数型生成函数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1521 标准的指数型生成函数: WA了好几遍,原来是多组数据啊囧: 注意精度,直接强制转换(int)是舍去小 ...
- hdu 1521 排列组合【指数型生成函数】
根据套路列出式子:\( \prod_{i=1}^{n}\sum_{j=0}^{c[i]}\frac{x^j}{j!} \),然后暴力展开即可 #include<iostream> #inc ...
- hdu 4535(排列组合之错排公式)
吉哥系列故事——礼尚往来 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tota ...
- hdu 4497(排列组合+LCM和GCD)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 4705 排列组合
思路:枚举能是A,B,C在一条简单路径上的中点. 计算多少个几何能满足.在用总数减去 #pragma comment(linker, "/STACK:16777216") #inc ...
- 排列组合 HDU - 1521 -指数型母函数
排列组合 HDU - 1521 一句话区分指数型母函数和母函数就是 母函数是组合数,指数型母函数是排列数 #include<bits/stdc++.h> using namespace s ...
- ACM~排列组合&&hdu例子
排列组合是数学中的一个分支.在计算机编程方面也有非常多的应用,主要有排列公式和组合公式.错排公式.母函数.Catalan Number(卡特兰数)等. 一.有关组合数学的公式 1.排列公式 P(n ...
随机推荐
- 【Nginx】优化配置
nginx优化 突破十万并发 一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1. worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它 ...
- Laravel中如何添加新字段,如何指定在某个字段后而不是添加在最后
解答:
- TClientDataSet[5]: 读取数据
本例用到: TClientDataSet.Fields[]; { 字段集合; 它比 FieldList 有更多功能, 如可获取嵌套字段 } TClientDataSet.FieldL ...
- 第124天:移动web端-Bootstrap轮播图插件使用
Bootstrap JS插件使用 > 对于Bootstrap的JS插件,我们只需要将文档实例中的代码粘到我们自己的代码中> 然后作出相应的样式调整 Bootstrap中轮播图插件叫作Car ...
- 第120天:移动端-Bootstrap基本使用方法
一.Bootstrap使用 1.搭建Bootstrap页面骨架及项目目录结构 ``` ├─ /weijinsuo/ ··················· 项目所在目录 └─┬─ /css/ ···· ...
- HDU5669-Road
题意 给一个\(n\)个点的图,标号为\(1\)到\(n\),进行\(m\)次连边\((a,b,c,d,w)\): for i in range[a,b]: for j in range[c,d]: ...
- UVA10859 Placing Lampposts
我是题面 这道题使我知道了一种很神奇的方法,一定要认真看哦 如果没有被两盏灯同时照亮的边数应尽量大这个限制的话,这就是一道很经典的树形DP题--没有上司的舞会 很可惜,这个限制就在那里,它使得我辛苦写 ...
- 深入理解JVM一垃圾回收算法
我们都知道java语言与C语言最大的区别就是内存自动回收,那么JVM是怎么控制内存回收的,这篇文章将介绍JVM垃圾回收的几种算法,从而了解内存回收的基本原理. 一.stop the world 在介绍 ...
- CodeForces - 955B(用char会超时。。。)
#include <bits/stdc++.h> #define mem(a, b) memset(a, b, sizeof(a)) using namespace std; , INF ...
- 【BZOJ2763】飞行路线(最短路)
[BZOJ2763]飞行路线(最短路) 题面 BZOJ Description Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标 ...