最短路径 bellman-ford
- 初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0
- 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次,看下面的描述性证明(当做树))
- 检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在d[v]中
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
typedef struct Edge //边
{
int u, v;
int cost;
}Edge;
Edge edge[N];
int dis[N], pre[N];
bool Bellman_Ford()
{
for(int i = 1; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? 0 : MAX);
for(int i = 1; i <= nodenum - 1; ++i)
for(int j = 1; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;
}
bool flag = 1; //判断是否含有负权回路
for(int i = 1; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = 0;
break;
}
return flag;
}
void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
}
int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);
pre[original] = original;
for(int i = 1; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
}
if(Bellman_Ford())
for(int i = 1; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
return 0;
}
最短路径 bellman-ford的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- 图论算法——最短路径Dijkstra,Floyd,Bellman Ford
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- PKU 3169 Layout(差分约束系统+Bellman Ford)
题目大意:原题链接 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相同的 ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
随机推荐
- 分享:宽恕的艺术 Forgive
宽恕的艺术 To forgive may be divine, but no one ever said it was easy. 宽恕是神圣的,但是没有人说很容易做到宽恕别人. When someo ...
- spring boot 系列学习记录
——初始篇 结束了短学期的课程,初步学习了ssm框架,凭借这些学到的知识完成了短学期的任务-----点餐系统. 通过学长了解到了spring boot ,自己对spring cloud有所耳闻,但是s ...
- java获取时间段内的所有日期
public static void main(String[] args) { SimpleDateFormat dateFormat = new SimpleDateForm ...
- mysql覆盖索引
话说有这么一个表: CREATE TABLE `user_group` ( `id` int(11) NOT NULL auto_increment, `uid` int(11) NOT NU ...
- Linux vim编辑器常用命令
Vim是一个类似于Vi的著名的功能强大.高度可定制的文本编辑器 常用的vim命令如下图 补充: num+命令 对命令执行num次,如 5dd:剪切一行 * 5 即剪切5行,其它如此 /text ...
- Linux系统的SVN客户端使用技巧详解
忽略文件/文件夹 假设想忽略文件temp,cd到temp所在的目录下: $ svn propedit svn:ignore . [注意:请别漏掉最后的点(.表示当前目录),如果报错请看后面] 打开的文 ...
- python手写bp神经网络实现人脸性别识别1.0
写在前面:本实验用到的图片均来自google图片,侵删! 实验介绍 用python手写一个简单bp神经网络,实现人脸的性别识别.由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lf ...
- 将jar包发布到nexus仓库
版本的快速迭代不适合release发布到仓库,snapshot方便版本的快速迭代. 1.pom改为snapshot <dependency> <groupId>com.sf.c ...
- Git-创建和合并分支
本人拜读了廖雪峰老师关于Git的讲述后整理所得 分支就是科幻电影里面的平行宇宙,当你正在电脑前努力学习Git的时候,另一个你正在另一个平行宇宙里努力学习SVN. 如果两个平行宇宙互不干扰,那对现在的你 ...
- idea新建的项目,文件夹右键不能新建class
一般情况下,新建的mave项目,通常没有XXX\src\main\java这个目录,如果手动创建,则又不能右键build与java相关的,强行建立的话,也不会被idea所识别,更不会被虚拟机编译执行. ...