#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

Mat img1, img2, img3, img4, img5, img6, img_result, img_gray1, img_gray2, img_gray3, img_canny1, img_binary1, img_dist1, img_dist2, kernel_1, kernel_2, img_laplance, img_sharp;

char win1[] = "window1";
char win2[] = "window2";
char win3[] = "window3";
char win4[] = "window4";
char win5[] = "window5";
char win6[] = "window6";
char win7[] = "window7";

int thread_value = 100;
int max_value = 255;
RNG rng1(12345);
RNG rng2(1235);

double harris_min = 0;
double harris_max = 0;

int Demo_Normalize();
void Demo_1(int, void*);

//归一化处理
int Demo_Normalize()
{
  namedWindow(win1, CV_WINDOW_AUTOSIZE);
  //namedWindow(win2, CV_WINDOW_AUTOSIZE);
  //namedWindow(win3, CV_WINDOW_AUTOSIZE);

  img1 = imread("D://images//4//3.jpg");
  //img2 = imread("D://images//1//p5_1.jpg");
  if (img1.empty())
  {
    cout << "could not load image..." << endl;
    return 0;
  }
  imshow(win1, img1);

  /*

  参数说明
  src               输入数组;
  dst               输出数组,数组的大小和原数组一致;
  alpha           1,用来规范值,2.规范范围,并且是下限;
  beta             只用来规范范围并且是上限;
  norm_type   归一化选择的数学公式类型;
  dtype           当为负,输出在大小深度通道数都等于输入,当为正,输出只在深度与输如不同,不同的地方游dtype决定;
  mark            掩码。选择感兴趣区域,选定后只能对该区域进行操作。

  */
  normalize(img1, img2, 0, 1, NORM_MINMAX, -1, Mat());
  imshow(win2, img2*1000);

  return 0;
}

void Demo_1(int, void*)
{
  

}

int main()
{
  Demo_Normalize();

  waitKey(0);
  return 0;
}

Opencv normalize的更多相关文章

  1. opencv —— normalize 矩阵归一化

    归一化:就是将数据通过某种算法,限制需要的一定范围内. 归一化的目的:简而言之,是使得没有可比性的数据变得具有可比性,同时又保持相比较的两个数据之间的相对关系,如大小关系:或是为了作图,原来很难在一张 ...

  2. OpenCV2马拉松第13圈——模版匹配

    收入囊中 在http://blog.csdn.net/abcd1992719g/article/details/25505315这里,我们已经学习了怎样利用反向投影和meanshift算法来在图像中查 ...

  3. OpenCV之图像归一化(normalize)

    什么图像归一化 通俗地讲就是将矩阵的值通过某种方式变到某一个区间内 图像归一化的作用 目前能理解的就是归一化到某个区间便于处理,希望高人可以指点 opencv文档中的介绍 C++: void norm ...

  4. OpenCV——归一化函数normalize

    函数原型: void cv::normalize(InputArry src,InputOutputArray dst,double alpha=1,double beta=0,int norm_ty ...

  5. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  6. OpenCV人脸识别LBPH算法源码分析

    1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...

  7. 使用OpenCV&&C++进行模板匹配.

    一:课程介绍 1.1:学习目标 学会用imread载入图像,和imshow输出图像. 用nameWindow创建窗口,用createTrackbar加入滚动条和其回调函数的写法. 熟悉OpenCV函数 ...

  8. OpenCV Template Matching Subpixel Accuracy

    OpenCV has function matchTemplate to easily do the template matching. But its accuracy can only reac ...

  9. OpenCV基于傅里叶变换进行文本的旋转校正

    傅里叶变换可以用于将图像从时域转换到频域,对于分行的文本,其频率谱上一定会有一定的特征,当图像旋转时,其频谱也会同步旋转,因此找出这个特征的倾角,就可以将图像旋转校正回去. 先来对原始图像进行一下傅里 ...

随机推荐

  1. 优化html标签

    借用Effective之名,开始写Effective系列,总结一些前端的心得. 有些人写页面会走向一个极端,几乎页面所有的标签都用div,究其原因,用div有很多好处,一个是div没有默认样式,不会有 ...

  2. python is 和 == 的区别

    一.is 和 == 的区别 == 比较 比较的俩边的值 is 比较 比较的是内存地址 id() 二.小数据池 数字小数据池的范围 -5 ~ 256 字符串中如果有特殊字符他们的内存地址就不一样 字符串 ...

  3. MySQL Join算法与调优白皮书(二)

    Index Nested-Loop Join   (接上篇)由于访问的是辅助索引,如果查询需要访问聚集索引上的列,那么必要需要进行回表取数据,看似每条记录只是多了一次回表操作,但这才是INLJ算法最大 ...

  4. TMS320C6657双核DSP的图像处理系统开发(1):硬件相关tips

             1.前言 新项目中打算对现有的TMS320C6455+Kintex7 FPGA平台进行升级,采用TMS320C6657作为新核心,主要考虑到几点点: 1)具备DDR3接口,可以更加方 ...

  5. 【BZOJ】4721: [Noip2016]蚯蚓 / 【洛谷】P2827 蚯蚓(单调队列)

    Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮 ...

  6. 为什么多线程读写 shared_ptr 要加锁?

    https://www.cnblogs.com/Solstice/archive/2013/01/28/2879366.html 为什么多线程读写 shared_ptr 要加锁? 陈硕(giantch ...

  7. 分析java类的初始化契机

    分析java类的静态成员变量初始化先于非静态成员变量   依上图中当class字节码文件被jvm虚拟机加载到内存中依次经过 连接 验证:对字节码进行验证 准备:给静态变量分配内存并赋予变量类型各自的默 ...

  8. 1.Linux下生成密钥

    1.Linux下生成密钥 ssh-keygen的命令手册,通过”man ssh-keygen“命令: 通过命令”ssh-keygen -t rsa“ 生成之后会在用户的根目录生成一个 “.ssh”的文 ...

  9. c++获取lua嵌套table某属性的值

    开发环境:vs2012 lua版本:LuaJIT-2.0.2 lua文件作为配置文件,c++读取这个配置. lua配置结构如下 SceneConfig = { [] = { name =}, [] = ...

  10. Django 组件-cookie 与 session

    会话跟踪技术 1 什么是会话跟踪技术 我们需要先了解一下什么是会话!可以把会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应.例如你给10086打个电话,你就是客户端,而10 ...