bzoj 1109
思路:我们考虑dp[ i ] 表示的是 i 在指定位置上 的最大个数,
dp[ i ] = max(dp[ j ] + 1)
j需要满足3个条件
1. j < i
2. a[ j ] < a[ i ]
3. a[ i ] - a[ j ] <= i - j
通过 2,3 我们能推出1
所以其实是个二维偏序问题
将序列按 a[ i ]排序后可以用树状数组解决或者转化为LIS问题。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 2e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 +; int a[N], n; pii p[N];
void modify(int x, int v) {
for(int i = x; i < N; i += i & -i) {
a[i] = max(a[i], v);
}
} int getMx(int x) {
int ans = ;
for(int i = x; i; i -= i & -i) {
ans = max(ans, a[i]);
}
return ans;
} bool cmp(pii a, pii b) {
if(a.fi == b.fi) return a.se - a.fi > b.se - b.fi;
return a.fi < b.fi;
}
int main() {
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &p[i].fi);
p[i].se = i;
} sort(p + , p + + n, cmp); int ans = ; for(int i = ; i <= n; i++) {
if(p[i].se - p[i].fi < )
continue; int mx = getMx(p[i].se - p[i].fi + );
modify(p[i].se - p[i].fi + , mx + );
ans = max(ans, mx + ); } printf("%d\n", ans);
return ;
}
/*
*/
bzoj 1109的更多相关文章
- BZOJ 1109: [POI2007]堆积木Klo
1109: [POI2007]堆积木Klo Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 948 Solved: 341[Submit][Statu ...
- BZOJ.1109.[POI2007]堆积木Klo(DP LIS)
BZOJ 二维\(DP\)显然.尝试换成一维,令\(f[i]\)表示,强制把\(i\)放到\(a_i\)位置去,现在能匹配的最多数目. 那么\(f[i]=\max\{f[j]\}+1\),其中\(j& ...
- BZOJ 1109 [POI2007]堆积木Klo(树状数组)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1109 [题目大意] Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体. ...
- bzoj 1109 [POI2007]堆积木Klo(LIS)
[题意] n个数的序列,删除一个数后序列左移,求最后满足i==a[i]的最大个数. [思路] 设最终得到a[i]==i的序列为s,则s应满足: i<j,a[i]<a[j],i-a[i]&l ...
- BZOJ 1109 POI2007 堆积木Klo LIS
题目大意:给定一个序列,能够多次将某个位置的数删掉并将后面全部数向左串一位,要求操作后a[i]=i的数最多 首先我们如果最后a[i]=i的数的序列为S 那么S满足随着i递增,a[i]递增(相对位置不变 ...
- BZOJ 1109 (LIS)
题面 传送门 分析 设dp[i]是第i个积木在自己的位置上时,前i个积木中最多能回到自己位置的数目. \(dp[i]=max(dp[j])+1 (i>j,a[i]>a[j],a[i]-a[ ...
- 【BZOJ】1109: [POI2007]堆积木Klo
题意 \(n(1 \le n \le 100000)\)个数放在一排,可以一走一些数(后面的数向前移),要求最大化\(a_i=i\)的数目. 分析 分析容易得到一个dp方程. 题解 \(d(i)\)表 ...
- 【BZOJ】初级水题列表——献给那些想要进军BZOJ的OIers(自用,怕荒废了最后的六月考试月,刷刷水题,水水更健康)
BZOJ初级水题列表——献给那些想要进军BZOJ的OIers 代码长度解释一切! 注:以下代码描述均为C++ RunID User Problem Result Memory Time Code_Le ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
随机推荐
- chrome 浏览器如何安装草料二维码
https://cli.im/news/6527 实测有效
- java格式化字符串,在指定位置插入指定字符串,兼容中英文以及特殊字符,例如:换行,用于解决生成pdf换行问题等问题
本博客是自己在学习和工作途中的积累与总结,仅供自己参考,也欢迎大家转载,转载时请注明出处. http://www.cnblogs.com/king-xg/p/6370890.html 如果觉得对您有 ...
- 教你破解MyEclipse到2016年【图文详解】
1.首先确定JDK以及环境变量没有问题.因为破解工具包里的run.bat是调用java命令执行jar包,如果环境变量没有配置好,那就运行不了了.2.解压破解包,双击[run.bat]打开破解界面: 3 ...
- MyEclipse+Weblogic+Oracle+PLSQL配置注意事项
Weblogic配置详情:<Weblogic安装与配置图文详解>Oracle+PLSQL配置详情:<PL/SQL访问远程Oracle服务器(多种方式)>MyEclipse配置: ...
- C++ Arithmetic Exception
运算异常错误,比如除零错误,浮点数取余等等.
- 不平衡分类学习方法 --Imbalaced_learn
最近在进行一个产品推荐课题时,由于产品的特性导致正负样本严重失衡,远远大于3:1的比例(个人认为3:1是建模时正负样本的一个临界点),这样的样本不适合直接用来建模,例如正负样本的比例达到了50:1,就 ...
- ⑥ 设计模式的艺术-06.建造者(Builder)模式
场景 我们要建造一个复杂的产品.比如:神州飞船,Iphone.这个复杂的产品的创建.有这样一个问题需要处理: 装配这些子组件是不是有个步骤问题? 实际开发中,我们所需要的对象构建时,也非常复杂,有很多 ...
- LintCode 394: First Will Win
LintCode 394: First Will Win 题目描述 有n个硬币排成一条线.两个参赛者轮流从右边依次拿走1或2个硬币,直到没有硬币为止.拿到最后一枚硬币的人获胜. 请判定 第一个玩家 是 ...
- oozie与hive的简单案例
1.把oozie中自带的hive案例拷贝到 测试目录 /opt/cdh-5.3.6/oozie-4.0.0-cdh5.3.6/oozie-apps下 2. 编辑 job.properties # # ...
- 面试整理(2)跨域:jsonp与CORS
问题:跨域有哪些方法?jsonp的原理是什么? jsonp: 先说jsonp,jsonp的主要原理是利用script标签的src可以跨域请求,据说有src属性的都可以跨域请求,但script标签返回的 ...