Number String

http://acm.hdu.edu.cn/showproblem.php?pid=4055

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
The signature of a permutation is a string that is
computed as follows: for each pair of consecutive elements of the permutation,
write down the letter 'I' (increasing) if the second element is greater than the
first one, otherwise write down the letter 'D' (decreasing). For example, the
signature of the permutation {3,1,2,7,4,6,5} is "DIIDID".
Your task is as
follows: You are given a string describing the signature of many possible
permutations, find out how many permutations satisfy this
signature.
Note: For any positive integer n, a permutation of n elements
is a sequence of length n that contains each of the integers 1 through n exactly
once.
 
 
Input
Each test case consists of a string of 1 to 1000
characters long, containing only the letters 'I', 'D' or '?', representing a
permutation signature.
Each test case occupies exactly one single line,
without leading or trailing spaces.
Proceed to the end of file. The '?'
in these strings can be either 'I' or 'D'.
 
 
Output
For each test case, print the number of permutations
satisfying the signature on a single line. In case the result is too large,
print the remainder modulo 1000000007.
 
Sample Input
II
ID
DI
DD
?D
??
 
Sample Output
1
2
2
1
3
6
 
Hint

Permutation {1,2,3} has signature "II".

Permutations {1,3,2} and {2,3,1} have signature "ID".
Permutations {3,1,2} and {2,1,3} have signature "DI".
Permutation {3,2,1} has signature "DD".
"?D" can be either "ID" or "DD".
"??" gives all possible permutations of length 3.
 
 
题意:
给出长为n的一个字符串,根据这个字符串构造长为n+1的数字串
字符为‘I’,下一个数字要比这一个数字大
字符为‘D’ ,下一个数字要比这一个数字小
字符为‘?’,下一个数字没有限制
问数字串有多少种方案
 
一般套路:
f[i][j]表示长为i的串中,最后一个数字为j的方案数
若字符为‘I’,f[i][j]= Σ f[i-1][x]   1 <= x < j     
若字符为‘D’,f[i][j]= Σ f[i-1][x]  j <= x <= i-1  
若字符为‘?’,f[i][j]=Σ f[i-1][x]  1 <= x <= i-1
我们虽然根据 字符保证了相邻两个数字的大小关系,但并没有保证数字串里前i-1个数字没有数字j
这就有了后效性。怎么办?
给状态增加含义:必须选前i-1个数字
我们将过程想象为一个一个填数字的过程
那么由f[i-1][]向f[i][]的转移,就是在末尾(i位置)填上数字i
(因为状态的定义是必须选前i-1个数字)
那么岂不是只能填数字i?字符为‘D’时不就错了吗?第二维不就没有用吗?
我们考虑第二维j(要填的最后一个数字),
我们是否可以将填数字i转换到填数字j,
那么状态转移的时候,就要想如何填j使相邻数字的大小关系不变
将前i-1个数字>=j的都+1,这样就拿出了j,放在最后面
所以,上方状态转移成立
时间复杂度?O(n³) TLE
 
前缀和优化,时间复杂度O(n²)
其实很简单,照着原方程x的取值范围写就行
 1 <= x < j     前缀和就是sum[i-1][j-1]
j <= x <= i-1  前缀和就是 sum[i-1][i-1]-sum[i-1][j-1]
 1 <= x <= i-1  前缀和就是sum[i-1][i-1]
前缀和的更新: sum[i][j]=(sum[i][j-1]+f[i][j])%mod;
 
前缀和优化代码
#include<cstdio>
#include<cstring>
#define mod 1000000007
using namespace std;
int len,f[][],sum[][];
char s[];
int main()
{
while(scanf("%s",s+)!=EOF)
{
memset(f,,sizeof(f));
len=strlen(s+);
f[][]=; sum[][]=;
for(int i=;i<=len+;i++)
for(int j=;j<=i;j++)
{
if(s[i-]=='I') f[i][j]=sum[i-][j-];
else if(s[i-]=='D') f[i][j]=((sum[i-][i-]-sum[i-][j-])%mod+mod)%mod;
else f[i][j]=sum[i-][i-];
sum[i][j]=(sum[i][j-]+f[i][j])%mod;
}
printf("%d\n",sum[len+][len+]);
}
}

未优化代码

#include<cstdio>
#include<cstring>
#define mod 1000000007
using namespace std;
int len,f[][];
char s[];
int main()
{
while(scanf("%s",s+)!=EOF)
{
memset(f,,sizeof(f));
len=strlen(s+);
f[][]=;
for(int i=;i<=len+;i++)
for(int j=;j<=i;j++)
{
if(s[i-]=='I')
for(int k=;k<j;k++) f[i][j]+=f[i-][k];
else if(s[i-]=='D')
for(int k=j;k<i;k++) f[i][j]+=f[i-][k];
else
for(int k=;k<i;k++) f[i][j]+=f[i-][k];
}
int ans=;
for(int i=;i<=len+;i++) ans+=f[len+][i];
printf("%d\n",ans);
}
}

hdu 4055 Number String的更多相关文章

  1. HDU 4055 Number String dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4055 Number String Time Limit: 10000/5000 MS (Java/O ...

  2. hdu 4055 Number String(有点思维的DP)

    Number String Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  3. hdu 4055 Number String (基础dp)

    Number String Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  4. HDU 4055 Number String:前缀和优化dp【增长趋势——处理重复选数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4055 题意: 给你一个由'I', 'D', '?'组成的字符串,长度为n,代表了一个1~n+1的排列中 ...

  5. hdu 4055 Number String(dp)

    Problem Description The signature of a permutation is a string that is computed as follows: for each ...

  6. HDU 4055 Number String (计数DP)

    题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果第i字符是‘I’表示排列中的第i-1个数是小于第i个数的. 如果是‘D’,则反之. 析:dp[i][j] 表示前 i ...

  7. HDU 4055 Number String(DP计数)

    题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...

  8. hdu 4055 Number String(递推DP)

    给一个只含‘I','D','?'三种字符的字符串,I表示当前数字大于前面的数字,D表示当前的数字小于前面一位的数字,?表示当前位既可以小于又可以大于. 问1~n的排列中有多少个满足该字符串. http ...

  9. HDU 4054 Number String

    HDU 4054 Number String 思路: 状态:dp[i][j]表示以j结尾i的排列 状态转移: 如果s[i - 1]是' I ',那么dp[i][j] = dp[i-1][j-1] + ...

随机推荐

  1. OOP 1.5 类和对象的基本概念与用法1

    1.定义 面向对象的基本特点:抽象.封装.继承.多态 面向对象程序设计方法:将某类客观事物的共同特点归纳出来,形成一个数据结构 抽象:将事物所能进行的行为归纳出来,形成一个个函数,这些函数可以用来操作 ...

  2. 关于C语言的问卷调查!!!!!!!!!!

    1.我对自己的未来是现在通过大学这一平台逐渐接触社会,通过大学的这段时间学习C语言等计算机语言技术,有一技之长在手,并且通过大学时间丰富自己的业余生活,加强自己的人脉关系,为未来在事业上的发展做准备! ...

  3. Alpha 冲刺9

    队名:日不落战队 安琪(队长) 今天完成的任务 协助开发手写涂鸦demo. okhttp学习第三弹. 明天的计划 协助开发语音存储demo. 还剩下的任务 个人信息数据get. 遇到的困难 困难:整理 ...

  4. RovingUI组件库-包含堆栈式通知提醒框(Toast)的小程序组件库

    RovingUI是个人在开发小程序过程中将用到的组件集合而成的一个UI库,包含一些基本通用组件(按钮.栅格.通用样式.徽标.通知和面包屑). 源起得归于我在开发中没有找到现成的堆栈式提醒框(比如ant ...

  5. 在pycharm中使用scrapy爬虫

    目标在Win7上建立一个Scrapy爬虫项目,以及对其进行基本操作.运行环境:电脑上已经安装了python(环境变量path已经设置好), 以及scrapy模块,IDE为Pycharm .操作如下: ...

  6. 第四周PSP &进度条

    团队项目PSP 一:表格     C类型 C内容 S开始时间 E结束时间 I时间间隔 T净时间(mins) 预计花费时间(mins) 讨论 讨论开发环境.工具以及技术 8:37 10:42 25 10 ...

  7. java分页算法

    int totalPageNum = (totalRecord  +  pageSize  - 1) / pageSize;

  8. workstation vmware 制作vm模板

    [root@VM166136 ~]# cat copy_vmware.sh #!/bin/bash if [ $(id -u) -ne 0 ];then echo "Please use t ...

  9. 【转】MySQL数据类型

    1.整型 MySQL数据类型 含义(有符号) tinyint(m) 1个字节  范围(-128~127) smallint(m) 2个字节  范围(-32768~32767) mediumint(m) ...

  10. 只要实现了annotation这个接口就是注解 同理:只要实现了某个接口就是该类型的实现类

    只要实现了annotation这个接口就是注解  同理:只要实现了某个接口就是该类型的实现类