前面介绍了基本的网络模型以及IO与NIO,那么有了NIO来开发非阻塞服务器,大家就满足了吗?有了技术支持,就回去追求效率,因此就产生了很多NIO的框架对NIO进行封装——这就是大名鼎鼎的Netty。

前几篇的内容,可以参考:

  1. 网络IO的基本知识与概念
  2. 普通IO以及BIO服务器
  3. NIO的使用与服务器Hello world
  4. Netty的使用与服务器Hello world

为什么要使用开源框架?

这个问题几乎可以当做废话,框架肯定要比一些原生的API封装了更多地功能,重复造轮子在追求效率的情况并不是明智之举。那么先来说说NIO有什么缺点吧:

  1. NIO的类库和API还是有点复杂,比如Buffer的使用
  2. Selector编写复杂,如果对某个事件注册后,业务代码过于耦合
  3. 需要了解很多多线程的知识,熟悉网络编程
  4. 面对断连重连、保丢失、粘包等,处理复杂
  5. NIO存在BUG,根据网上言论说是selector空轮训导致CPU飙升,具体有兴趣的可以看看JDK的官网

那么有了这些问题,就急需一些大牛们开发通用框架来方便劳苦大众了。最致命的NIO框架就是MINA和Netty了,这里不得不说个小插曲:

先来看看MINA的主要贡献者:

再来看看NETYY的主要贡献者:

总结起来,有这么几点:

  1. MINA和Netty的主要贡献者都是同一个人——Trustin lee,韩国Line公司的。
  2. MINA于2006年开发,到14、15年左右,基本停止维护
  3. Nety开始于2009年,目前仍由苹果公司的norman maurer在主要维护。
  4. Norman Maurer是《Netty in Action》一书的作者

因此,如果让你选择你应该知道选择谁了吧。另外,MINA对底层系统要求功底更深,且国内Netty的氛围更好,有李林峰等人在大力宣传(《Netty权威指南》的作者)。

讲了一大堆的废话之后,总结来说就是——Netty有前途,学它准没错。

Netty介绍

按照定义来说,Netty是一个异步、事件驱动的用来做高性能、高可靠性的网络应用框架。主要的优点有:

  1. 框架设计优雅,底层模型随意切换适应不同的网络协议要求
  2. 提供很多标准的协议、安全、编码解码的支持
  3. 解决了很多NIO不易用的问题
  4. 社区更为活跃,在很多开源框架中使用,如Dubbo、RocketMQ、Spark等

主要支持的功能或者特性有:

  1. 底层核心有:Zero-Copy-Capable Buffer,非常易用的灵拷贝Buffer(这个内容很有意思,稍后专门来说);统一的API;标准可扩展的时间模型
  2. 传输方面的支持有:管道通信(具体不知道干啥的,还请老司机指教);Http隧道;TCP与UDP
  3. 协议方面的支持有:基于原始文本和二进制的协议;解压缩;大文件传输;流媒体传输;protobuf编解码;安全认证;http和websocket

总之提供了很多现成的功能可以直接供开发者使用。

Netty服务器小例子

基于Netty的服务器编程可以看做是Reactor模型:



即包含一个接收连接的线程池(也有可能是单个线程,boss线程池)以及一个处理连接的线程池(worker线程池)。boss负责接收连接,并进行IO监听;worker负责后续的处理。为了便于理解Netty,直接看看代码:

package cn.xingoo.book.netty.chap04;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel; import java.net.InetSocketAddress;
import java.nio.charset.Charset; public class NettyNioServer {
public void serve(int port) throws InterruptedException {
final ByteBuf buffer = Unpooled.unreleasableBuffer(Unpooled.copiedBuffer("Hi\r\n", Charset.forName("UTF-8")));
// 第一步,创建线程池
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup(); try{
// 第二步,创建启动类
ServerBootstrap b = new ServerBootstrap();
// 第三步,配置各组件
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.localAddress(new InetSocketAddress(port))
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel socketChannel) throws Exception {
socketChannel.pipeline().addLast(new ChannelInboundHandlerAdapter(){
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
ctx.writeAndFlush(buffer.duplicate()).addListener(ChannelFutureListener.CLOSE);
}
});
}
});
// 第四步,开启监听
ChannelFuture f = b.bind().sync();
f.channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully().sync();
workerGroup.shutdownGracefully().sync();
}
} public static void main(String[] args) throws InterruptedException {
NettyNioServer server = new NettyNioServer();
server.serve(5555);
}
}

代码非常少,而且想要换成阻塞IO,只需要替换Channel里面的工厂类即可:

public class NettyOioServer {
public void serve(int port) throws InterruptedException {
final ByteBuf buf = Unpooled.unreleasableBuffer(Unpooled.copiedBuffer("Hi\r\b", Charset.forName("UTF-8"))); EventLoopGroup bossGroup = new OioEventLoopGroup(1);
EventLoopGroup workerGroup = new OioEventLoopGroup(); try{
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)//配置boss和worker
.channel(OioServerSocketChannel.class) // 使用阻塞的SocketChannel
....

概括来说,在Netty中包含下面几个主要的组件:

  • Bootstrap:netty的组件容器,用于把其他各个部分连接起来;如果是TCP的Server端,则为ServerBootstrap.
  • Channel:代表一个Socket的连接
  • EventLoopGroup:一个Group包含多个EventLoop,可以理解为线程池
  • EventLoop:处理具体的Channel,一个EventLoop可以处理多个Channel
  • ChannelPipeline:每个Channel绑定一个pipeline,在上面注册处理逻辑handler
  • Handler:具体的对消息或连接的处理,有两种类型,Inbound和Outbound。分别代表消息接收的处理和消息发送的处理。
  • ChannelFuture:注解回调方法

了解上面的基本组件后,就看一下几个重要的内容。

Netty的Buffer和零拷贝

在Unix操作系统中,系统底层可以基于mmap实现内核空间和用户空间的内存映射。但是在Netty中并不是这个意思,它主要来自于下面几个功能:

  1. 通过Composite和slice实现逻辑上的Buffer的组合和拆分,重新维护索引,避免内存拷贝过程。
  2. 通过DirectBuffer申请堆外内存,避免用户空间的拷贝。不过堆外内存的申请和释放都很麻烦,推荐小心使用。关于堆外内存的一些研究,还可以参考执勤的分享:Java堆外内存之突破JVM枷锁 以及 Java直接内存与非直接内存性能测试
  3. 通过FileRegion包装FileChannel,直接实现channel到channel的传输。

另外,Netty自己封装实现了ByteBuf,相比于Nio原生的ByteBuffer,API上更易用了;同时支持容量的动态扩容;另外还支持Buffer的池化,高效复用Buffer。

public class ByteBufTest {
public static void main(String[] args) {
//创建bytebuf
ByteBuf buf = Unpooled.copiedBuffer("hello".getBytes());
System.out.println(buf); // 读取一个字节
buf.readByte();
System.out.println(buf); // 读取一个字节
buf.readByte();
System.out.println(buf); // 丢弃无用数据
buf.discardReadBytes();
System.out.println(buf); // 清空
buf.clear();
System.out.println(buf); // 写入
buf.writeBytes("123".getBytes());
System.out.println(buf); buf.markReaderIndex();
System.out.println("mark:"+buf); buf.readByte();
buf.readByte();
System.out.println("read:"+buf); buf.resetReaderIndex();
System.out.println("reset:"+buf);
}
}

输出为:

UnpooledHeapByteBuf(ridx: 0, widx: 5, cap: 5/5)
UnpooledHeapByteBuf(ridx: 1, widx: 5, cap: 5/5)
UnpooledHeapByteBuf(ridx: 2, widx: 5, cap: 5/5)
UnpooledHeapByteBuf(ridx: 0, widx: 3, cap: 5/5)
UnpooledHeapByteBuf(ridx: 0, widx: 0, cap: 5/5)
UnpooledHeapByteBuf(ridx: 0, widx: 3, cap: 5/5)
mark:UnpooledHeapByteBuf(ridx: 0, widx: 3, cap: 5/5)
read:UnpooledHeapByteBuf(ridx: 2, widx: 3, cap: 5/5)
reset:UnpooledHeapByteBuf(ridx: 0, widx: 3, cap: 5/5)

有兴趣的可以看一下上一篇分享的ByteBuffer,对比一下,就能发现在Netty中通过独立的读写索引维护,避免读写模式的切换,更加方便了。

Handler的使用

前面介绍了Handler包含了Inbound和Outbound两种,他们统一放在一个双向链表中:

当接收消息的时候,会从链表的表头开始遍历,如果是inbound就调用对应的方法;如果发送消息则从链表的尾巴开始遍历。那么上面途中的例子,接收消息就会输出:

InboundA --> InboundB --> InboundC

输出消息,则会输出:

OutboundC --> OutboundB --> OutboundA

这里有段代码,可以直接复制下来,试试看:

package cn.xingoo.book.netty.pipeline;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel; import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.nio.charset.Charset; /**
* 注意:
*
* 1 ChannelOutboundHandler要在最后一个Inbound之前
*
*/
public class NettyNioServerHandlerTest { final static ByteBuf buffer = Unpooled.unreleasableBuffer(Unpooled.copiedBuffer("Hi\r\n", Charset.forName("UTF-8"))); public void serve(int port) throws InterruptedException { EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup(); try{
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.localAddress(new InetSocketAddress(port))
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel socketChannel) throws Exception {
ChannelPipeline pipeline = socketChannel.pipeline();
pipeline.addLast("1",new InboundA());
pipeline.addLast("2",new OutboundA());
pipeline.addLast("3",new InboundB());
pipeline.addLast("4",new OutboundB());
pipeline.addLast("5",new OutboundC());
pipeline.addLast("6",new InboundC());
}
});
ChannelFuture f = b.bind().sync();
f.channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully().sync();
workerGroup.shutdownGracefully().sync();
}
} public static void main(String[] args) throws InterruptedException {
NettyNioServerHandlerTest server = new NettyNioServerHandlerTest();
server.serve(5555);
} private static class InboundA extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf buf = (ByteBuf)msg;
System.out.println("InboundA read"+buf.toString(Charset.forName("UTF-8")));
super.channelRead(ctx, msg);
}
} private static class InboundB extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf buf = (ByteBuf)msg;
System.out.println("InboundB read"+buf.toString(Charset.forName("UTF-8")));
super.channelRead(ctx, msg);
// 从pipeline的尾巴开始找outbound
ctx.channel().writeAndFlush(buffer);
}
} private static class InboundC extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf buf = (ByteBuf)msg;
System.out.println("InboundC read"+buf.toString(Charset.forName("UTF-8")));
super.channelRead(ctx, msg);
// 这样会从当前的handler向前找outbound
//ctx.writeAndFlush(buffer);
}
} private static class OutboundA extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("OutboundA write");
super.write(ctx, msg, promise);
}
} private static class OutboundB extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("OutboundB write");
super.write(ctx, msg, promise);
}
} private static class OutboundC extends ChannelOutboundHandlerAdapter {
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
System.out.println("OutboundC write");
super.write(ctx, msg, promise);
}
}
}

最后有一个TCP粘包的例子,有兴趣的也可以自己试一下,代码就不贴上来了,可以参考最后面的Github连接。

参考

  1. 《Netty实战》
  2. 《Netty权威指南》
  3. github代码链接

漫谈Java IO之 Netty与NIO服务器的更多相关文章

  1. 漫谈Java IO之普通IO流与BIO服务器

    今天来复习一下基础IO,也就是最普通的IO. 网络IO的基本知识与概念 普通IO以及BIO服务器 NIO的使用与服务器Hello world Netty的使用与服务器Hello world 输入流与输 ...

  2. 漫谈Java IO之 NIO那些事儿

    前面一篇中已经介绍了基本IO的使用以及最简单的阻塞服务器的例子,本篇就来介绍下NIO的相关内容,前面的分享可以参考目录: 网络IO的基本知识与概念 普通IO以及BIO服务器 NIO的使用与服务器Hel ...

  3. 漫谈Java IO之基础篇

    Java的网络编程如果不是专门搞服务器性能开发或者消息分发,几乎可能涉及不到.但是它却是面试找工作必问的一个知识点,涵盖的知识体系也非常广泛,从Java底层IO原理到操作系统内核组成,再到网络TCP. ...

  4. Java IO系列之四:NIO通信模型

    分布式rpc框架有很多,比如dubbo,netty,还有很多其他的产品.但他们大部分都是基于nio的, nio是非阻塞的io,那么它的内部机制是怎么实现的呢. 1.由一个专门的线程处理所有IO事件,并 ...

  5. 高级Java工程师必备 ----- 深入分析 Java IO (二)NIO

    接着上一篇文章 高级Java工程师必备 ----- 深入分析 Java IO (一)BIO,我们来讲讲NIO 多路复用IO模型 场景描述 一个餐厅同时有100位客人到店,当然到店后第一件要做的事情就是 ...

  6. Java IO系列之三:NIO VS IO

    NIO VS IO NIO: 面向缓存: 非阻塞的: selector IO: 面向流:    阻塞的:     无 JAVA IO Java IO: Reading data from a bloc ...

  7. 深入分析JAVA IO(BIO、NIO、AIO)

    IO的基本常识 1.同步 用户进程触发IO操作并等待或者轮询的去查看IO操作是否完成 2.异步 用户触发IO操作以后,可以干别的事,IO操作完成以后再通知当前线程继续处理 3.阻塞 当一个线程调用 r ...

  8. 【转】深入分析JAVA IO(BIO、NIO、AIO)

    IO的基本常识 1.同步 用户进程触发IO操作并等待或者轮询的去查看IO操作是否完成 2.异步 用户触发IO操作以后,可以干别的事,IO操作完成以后再通知当前线程继续处理 3.阻塞 当一个线程调用 r ...

  9. java io 网络编程 高性能NIO

    很久没写了,一是觉得这后台不怎么方便,二是 写的时候突然觉得没兴趣了. 还好,今天突然想记一下,那就随便写吧.  1.一开始还是放几个连接.  什么是 同步,异步,阻塞,非阻塞 : http://bl ...

随机推荐

  1. RHEL64 缺少ISO 9660图像 安装程序试图挂载映像#1,在硬盘上无法找到该映像

    用光盘安装Linux,很容易,按照提示一步一步就好.如果没有光驱,只好想办法用硬盘或者U盘安装了. 首先说说怎样用U盘启动Linux的安装程序:1.将ISO镜像文件拷贝到U盘中,并解压到U盘根目录.将 ...

  2. Java和Flex整合报错(五)

    1.错误描述 usage: java org.apache.catalina.startup.Catalina [ -config {pathname} ] [ -nonaming ] { -help ...

  3. 手机端仿ios的银行下拉脚本五

    代码 <script> $('#bankName').click(function(){ var $this = $(this); new Picker({ "title&quo ...

  4. thinkphp在mac下报错

    简要:众所周知,开发软件最好的环境是在MAC下;为此在黑苹果上,用Thinkphp开发;在过程中出现,找不到model以及数据库类型错误;为此向大家分享解决办法,希望能够帮助困惑的伙伴们,如果有不对或 ...

  5. [BZOJ1543] 生成树计数 (Kruskal)

    Description 给定一个连通的带边权的图(允许自环和重边),求不同的最小生成树个数.两个生成树不同当它们所用的边的序号不同,换句话说,重边算多次. Input 第一行n,m,表示点数和边数(1 ...

  6. handsontable 方法汇总

    核心方法 1.为handsontable添加钩子方法 addHook(key,callback):key为钩子方法名 例如:hot.addHook('beforeInit', myCallback); ...

  7. SDN 网络系统之 Mininet 与 API 详解

    SDN 网络系统之 Mininet 与 API 详解 Mininet 是轻量级的软件定义网络系统平台,同时提供了对 OpenFlow 协议的支持.本文主要介绍了 Mininet 的相关概念与特性,并列 ...

  8. 关于slmgr命令

    需要管理员的权限运行.这个命令可以用来卸载系统的序列号.使系统处于未激活状态.

  9. Windows 8 系统快捷键热键列表收集

    值得收藏参考的 Windows 8 系统快捷键热键列表收集大全汇总,键盘党效率党必备啊! 相信不少喜欢接触新鲜软件的同学都已经给电脑安装上Windows 8 操作系统了吧!这个系统优秀与否我们暂且不讨 ...

  10. 使用uiautomation自动化重命名pdf书签,使全大写字母变成首字母大写

    今天下载了一个英文pdf书籍,但书签全是大写英文字母,看上去有点别扭,于是想办法用自动化重命名pdf书签, 使书签全部变成首字母大写. pdf原始书签如下图: 重命名后的pdf书签 自动化动态效果图, ...