题面

求\(\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i, j)\)

n<=4000000,数据组数T<=100

答案保证在64位带符号整数范围内(long long就好)

Sol

之前做了一道假的

先不管i,j是否有序,我们就求\(\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i, j)\)

最后\(ans=(ans - (n + 1) * n / 2) / 2\)即可

推导

\(ans=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)*\lfloor\frac{n}{i*d}\rfloor^2\)

\(用k替换i*d,ans=\sum_{k=1}^{n}\lfloor\frac{n}{k}\rfloor^2\sum_{d|k}\mu(\frac{k}{d})d\)

\(\sum_{d|k}\mu(\frac{k}{d})d\)是积性函数,线性筛即可

加上数论分块

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(4e6 + 1); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], num;
ll f[_];
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; f[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, f[i] = i - 1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) f[i * prime[j]] = f[i] * f[prime[j]];
else{ f[i * prime[j]] = f[i] * prime[j]; break; }
}
}
for(RG int i = 2; i < _; ++i) f[i] += f[i - 1];
} int main(RG int argc, RG char *argv[]){
Prepare();
while(Zsydalao == 666){
RG ll n = Read(), ans = 0;
if(!n) break;
for(RG ll k = 1, j; k <= n; k = j + 1){
j = n / (n / k);
ans += (n / k) * (n / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", (ans - n * (n + 1) / 2) / 2);
}
return 0;
}

UVa11426 最大公约数之和(正版)的更多相关文章

  1. [UVa11426]最大公约数之和——极限版II

    题意:给出n,求: \[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\gcd(i,j)\] 多组数据,\(n<=4*10^6\) sol 今天心血来潮再来写一写式子 首先这里 ...

  2. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  3. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  4. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  5. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  6. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  7. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  8. 51nod 1040 最大公约数之和

    给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15   Input 1个数N(N <= ...

  9. 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...

随机推荐

  1. Go学习笔记03-附录

    第三部分 附录 A. 工具 1. 工具集 1.1 go build gcflags ldflags 更多参数: go tool 6g -h 或 [https://golang.org/cmd/gc/] ...

  2. yum安装man命令程序错误

    第一次安装CentOS后,man命令无法使用,查了一下,发现没有安装man命令程序.尝试安装man yum install man 结果如下: Loaded plugins: fastestmirro ...

  3. vue框架-学习记录

    前段时间在做vue项目时,遇到挺多问题,想简单总结一下: 1.关于父组件,子组件的通信 网上有很多这方面的讲解,讲解也比较细致,我主要总结了自己在项目中需要的: [1]父组件-子组件 也就是" ...

  4. nginx+tomcat单个域名及多个域名配置

    同步首发:http://www.yuanrengu.com/index.php/20171130.html 项目开发接近尾声,开始着手在生产环境部署项目,开发阶段部署项目都没用nginx.项目是采用S ...

  5. [记录]CentOS搭建SVN服务器(主从同步)

    CentOS搭建SVN服务器(主从同步)1.安装步骤如下: 1)安装: #yum install subversion 2)查看安装位置: #rpm -ql subversion 3)查看版本: #/ ...

  6. Activiti获取ProcessEngine的三种方法

    1.通过ProcessEngineConfiguration获取 package cn.lonecloud.mavenActivi; import org.activiti.engine.Proces ...

  7. lnmp HTTP ERROR 500

    http://www.cnblogs.com/thrillerz/p/4725409.html

  8. iOS中的定时器

    据我所知,iOS中的定时器有两种.一个叫NSTimer,一个叫CADisplayLink.还有一种是使用GCD,不常用,这里就不介绍了. 下边说下两个定时器分别得用法: =============== ...

  9. CodeForces-748C

    这题就是确定一个点,然后去找能够实现最短距离的点且距离最远的点,因为题目要求点最少.在查找时,如果从最后的点开始枚举,找到的第一个满足距离最短的点一定是最远点,但是查找的复杂度是O(n),共有n次查找 ...

  10. qwe框架- CNN 实现

    CNN实现 概述 我在qwe中有两种,第一种是按照Ng课程中的写法,多层循环嵌套得到每次的"小方格",然后WX+b,这样的做法是最简单,直观.但是效率极其慢.基本跑个10张以内图片 ...