Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

Sample Input

3
1 2 50
1 3 50
50 0 0

Sample Output

1.000000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。

做一个转化,转化为求不能进入充电状态的概率,最后用1减去即可
那么设 \(f[x]\) 表示x不能被进入充电状态的概率,先考虑子树内部:
\(f[x]=(1-q[i])*\prod{((1-f[u])*(1-p[i])+f[u])}\)
上面的转移方程意思为分两种情况:
1.子节点内部没有进入充电状态 \(f[u]\)
2.子节点内部已经进入充电状态,但是边断掉了 \((1-f[u])*(1-p[i])\)
最后从根下放再做一遍即可

转载于巨佬PI sonhttp://www.cnblogs.com/Yuzao/p/7679317.html

喻队太巨了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
int next,to;
double dis;
}edge[];
int num,head[];
double f[],ans,c[];
void add(int u,int v,double d)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=d;
}
void dfs1(int x,int fa)
{int i;
f[x]=-c[x];
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==fa) continue;
dfs1(v,x);
f[x]*=(-edge[i].dis)*(-f[v])+f[v];
}
}
void dfs2(int x,int fa)
{double tmp;
int i;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==fa) continue;
tmp=(-edge[i].dis)*(-f[v])+f[v];
tmp=f[x]/tmp;
f[v]*=(-edge[i].dis)*(-tmp)+tmp;
dfs2(v,x);
}
}
int main()
{int i,n,u,v;
double p;
cin>>n;
for (i=;i<=n-;i++)
{
scanf("%d%d%lf",&u,&v,&p);
add(u,v,p/100.0);
add(v,u,p/100.0);
}
for (i=;i<=n;i++)
scanf("%lf",&c[i]),c[i]/=100.0;
dfs1(,);
dfs2(,);
for (i=;i<=n;i++)
ans+=1.0-f[i];
printf("%.6lf\n",ans);
}

[SHOI2014]概率充电器的更多相关文章

  1. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  2. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  3. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  4. 洛谷 P4284 [SHOI2014]概率充电器 解题报告

    P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  5. P4284 [SHOI2014]概率充电器

    P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...

  6. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  7. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

  8. 【BZOJ3566】[SHOI2014]概率充电器 期望+树形DP

    [BZOJ3566][SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线 ...

  9. BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

    BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技 ...

  10. BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

随机推荐

  1. bug终结者 团队作业第一周

    bug终结者 团队作业第一周 小组组员及人员分工 小组成员 组长: 20162323 周楠 组员: 20162302 杨京典 20162322 朱娅霖 20162327 王旌含 20162328 蔡文 ...

  2. 卡尔曼滤波法C编程

    float Angle = 0.0;//卡尔曼滤波器的输出值,最优估计的角度 //float Gyro_x = 0.0;//卡尔曼滤波器的输出值,最优估计的角速度 float Q_angle = 0. ...

  3. JAVA接口基础知识总结

    1:是用关键字interface定义的. 2:接口中包含的成员,最常见的有全局常量.抽象方法. 注意:接口中的成员都有固定的修饰符. 成员变量:public static final     成员方法 ...

  4. nyoj 第几是谁

    第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其按字典序排列,如果给出任意一种排列, ...

  5. Django rest framework源码分析(4)----版本

    版本 新建一个工程Myproject和一个app名为api (1)api/models.py from django.db import models class UserInfo(models.Mo ...

  6. php代码开启缓冲的使用方法

    php可以开启缓冲区,就是将内容放到缓冲区,再决定什么时候发送给浏览器. 感谢:http://www.jb51.net/article/38964.htm 解析PHP中ob_start()函数的用法 ...

  7. C语言使用vs2013进行编辑

    由于vs2013是微软开发的产品所以在windows平台下无限兼容windows所有虽然比较大,但是还是比较值得 但是在运行C程序的遇到问题就是控制台一闪而过通过ctrl+F5执行也是不管用: #in ...

  8. Nginx动静分离架构

    Nginx动静分离简单来说就将动态与静态资源分开,不能理解成只是单纯的把动态页面和静态页面物理分离,严格意义上说应该是动态请求跟静态请求分开,可以理解成使用Nginx处理静态页面,Tomcat,Res ...

  9. SpringBoot单元测试中的测试方法执行顺序

    一.忽略方法@ignore 二.执行顺序@FixMethodOrder(MethodSorter.JVM) 我们在执行JUnit测试用例时,有时需要按照定义顺序执行单元测试方法,比如如在测试数据库相关 ...

  10. python利用文件对话框获取文件路径

    一.单文件 python3: import tkinter as tk from tkinter import filedialog root = tk.Tk() root.withdraw() fi ...