[BZOJ]1047 理想的正方形(HAOI2007)
真·水题。小C本来是不想贴出来的,但是有一股来自东方的神秘力量催促小C发出来。
Description
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
Input
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
Output
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
Sample Input
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
Sample Output
1
HINT
2<=a,b<=1000,n<=a,n<=b,n<=1000
Solution
如果你是按照BZOJ第一页AC人数做下来的话,你的思路会被前一题稍微套路一下。
回归正题,拿到这题我们正常的思路就是枚举所有矩阵,计算最大最小值更新答案。
暴力O(n^4),二维线段树O(n^2logn)……发现可以降维(先做第一维,再做第二维)……发现询问区间长度固定……
单调队列啊……
每一行都维护两个单调队列(最大最小值),a行同时进行维护。
维护到所有可能的右端点时,把维护的这a个最大/小值拿出来,在列上做一遍单调队列,顺便更新答案。
时间复杂度O(n^2)。
题解写得比较意识流,但小C认为如果你没懂不是小C的错。
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MN 1005
#define INF 0x3FFFFFFF
using namespace std;
struct que
{
int hd,tl,q1[MN],q2[MN];
void clear() {hd=; tl=;}
int top() {return q2[hd];}
void push(int x,int y,int g)
{
for (;hd<=tl&&((y>q2[tl])^g);--tl);
++tl; q1[tl]=x; q2[tl]=y;
}
void pop(int x) {for (;hd<=tl&&q1[hd]<=x;++hd);}
}sdu[MN],sdd[MN],su,sd;
int a[MN][MN];
int n,m,p,ans; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,j;
n=read(); m=read(); p=read(); ans=INF;
for (i=;i<=n;++i)
for (j=;j<=m;++j) a[i][j]=read();
for (i=;i<=n;++i) sdu[i].clear(),sdd[i].clear();
for (i=;i<=n;++i)
for (j=;j<p;++j) sdu[i].push(j,a[i][j],),sdd[i].push(j,a[i][j],);
for (i=p;i<=m;++i)
{
su.clear(); sd.clear();
for (j=;j<=n;++j)
{
sdu[j].push(i,a[j][i],); sdu[j].pop(i-p);
sdd[j].push(i,a[j][i],); sdd[j].pop(i-p);
su.push(j,sdu[j].top(),); su.pop(j-p);
sd.push(j,sdd[j].top(),); sd.pop(j-p);
if (j>=p) ans=min(ans,su.top()-sd.top());
}
}
printf("%d",ans);
}
Last Word
小C才不会告诉你把这题贴出来的原因是小C觉得自己的代码好看。
[BZOJ]1047 理想的正方形(HAOI2007)的更多相关文章
- [HAOI2007][BZOJ 1047]理想的正方形
Description 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. Input 第一行为3个整数,分别表示a,b,n的值第二行至第 ...
- BZOJ 1047 理想的正方形(单调队列)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1047 题意:给出一个n*m的矩阵.在所有K*K的子矩阵中,最大最小差值最小的是多少? 思 ...
- BZOJ 1047 理想的正方形
单调队列的基本应用. #include<iostream> #include<cstdio> #include<cstring> #include<algor ...
- 理想的正方形 HAOI2007(二维RMQ)
理想的正方形 省队选拔赛河南 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 大师 Master 题目描述 Description 有一个a*b的整数组成的矩阵,现 ...
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- 【BZOJ】【1047】【HAOI2007】理想的正方形
DP/单调队列优化 一眼看上去就是DP 我想的naive的二维DP是酱紫滴: mx[i][j][k]表示以(i,j)为右下角的k*k的正方形区域内的最大值,mn[i][j][k]同理 mx[i][j] ...
- bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形
http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...
随机推荐
- 常用的 html 标签及注意事项
<a> 标签 用法:用于定义超链接 清除浏览器默认样式: a { text-decoration: none;/* 去除下划线 */ color: #333;/* 改变链接颜色 */ } ...
- python全栈开发-Day13 内置函数
一.内置函数 注意:内置函数id()可以返回一个对象的身份,返回值为整数. 这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,最精准的还是以 ...
- Android类加载机制及热修复实现
Android类加载机制 Dalvik虚拟机如同其他Java虚拟机一样,在运行程序时首先需要将对应的类加载到内存中.而在Java标准的虚拟机中,类加载可以从class文件中读取,也可以是其他形式的二进 ...
- ajax和jquery使用技巧
1.使用ajax的方法的时候可以使用u方法来获取连接,这样更加安全:alert弹窗的时候需要单引号双引号火狐浏览器会报错!
- 第四章 JavaScript操作DOM对象
第四章 JavaScript操作DOM对象 一.DOM操作 DOM是Document Object Model的缩写,即文档对象模型,是基于文档编程的一套API接口,1988年,W3C发布了第一级 ...
- URL编码和Base64编码 (转)
我们经常会遇到所谓的URL编码(也叫百分号编码)和Base64编码. 先说一下Bsae64编码.BASE64编码是一种常用的将二进制数据转换为64个可打印字符的编码,常用于在通常处理文本数据 ...
- Mybatis入门程序
作为一个java的学习者,我相信JDBC是大家最早接触也是入门级别的数据库连接方式,所以我们先来回忆一下JDBC作为一种用于执行SQL语句的Java API是如何工作的.下面的一段代码就是最基本的JD ...
- http缓存浅谈
我们在访问百度首页的时候,会发现不管怎么刷新页面,静态资源基本都是返回 200(from cache): 随便点开一个静态资源是酱的: 哎哟有Response报头数据呢,看来服务器也正常返回了etag ...
- Docker学习笔记 - Docker Compose 脚本命令
Docker Compose 配置文件包含 version.services.networks 三大部分,最关键的是 services 和 networks 两个部分, version: '2' se ...
- 页面加载loading动画
关于页面加载的loading动画,能度娘到的大部分都是通过定时器+蒙层实现的,虽然表面上实现了动画效果,实际上动化进程和页面加载进程是没有什么关系的,只是设置几秒钟之后关闭蒙层,但假如页面须要加载的元 ...