Given a string, your task is to count how many palindromic substrings in this string.

The substrings with different start indexes or end indexes are counted as different substrings even they consist of same characters.

Example 1:

Input: "abc"
Output: 3
Explanation: Three palindromic strings: "a", "b", "c".

Example 2:

Input: "aaa"
Output: 6
Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".

Note:

  1. The input string length won't exceed 1000.

这道题给了一个字符串,让我们计算有多少个回文子字符串。博主看到这个题,下意识的想着应该是用 DP 来做,哼哼哧哧写了半天,修修补补,终于通过了,但是博主写的 DP 不是最简便的方法,略显复杂,这里就不贴了。还是直接讲解大神们的解法好了。其实这道题也可以用递归来做,而且思路非常的简单粗暴。就是以字符串中的每一个字符都当作回文串中间的位置,然后向两边扩散,每当成功匹配两个左右两个字符,结果 res 自增1,然后再比较下一对。注意回文字符串有奇数和偶数两种形式,如果是奇数长度,那么i位置就是中间那个字符的位置,所以左右两遍都从i开始遍历;如果是偶数长度的,那么i是最中间两个字符的左边那个,右边那个就是 i+1,这样就能 cover 所有的情况啦,而且都是不同的回文子字符串,参见代码如下:

解法一:

class Solution {
public:
int countSubstrings(string s) {
if (s.empty()) return ;
int n = s.size(), res = ;
for (int i = ; i < n; ++i) {
helper(s, i, i, res);
helper(s, i, i + , res);
}
return res;
}
void helper(string s, int i, int j, int& res) {
while (i >= && j < s.size() && s[i] == s[j]) {
--i; ++j; ++res;
}
}
};

在刚开始的时候博主提到了自己写的 DP 的方法比较复杂,为什么呢,因为博主的 dp[i][j] 定义的是范围 [i, j] 之间的子字符串的个数,这样其实还需要一个二维数组来记录子字符串 [i, j] 是否是回文串,那还不如直接就将 dp[i][j] 定义成子字符串 [i, j] 是否是回文串就行了,然后i从 n-1 往0遍历,j从i往 n-1 遍历,然后看 s[i] 和 s[j] 是否相等,这时候需要留意一下,有了 s[i] 和 s[j] 相等这个条件后,i和j的位置关系很重要,如果i和j相等了,则 dp[i][j] 肯定是 true;如果i和j是相邻的,那么 dp[i][j] 也是 true;如果i和j中间只有一个字符,那么 dp[i][j] 还是 true;如果中间有多余一个字符存在,则需要看 dp[i+1][j-1] 是否为 true,若为 true,那么 dp[i][j] 就是 true。赋值 dp[i][j] 后,如果其为 true,结果 res 自增1,参见代码如下:

解法二:

class Solution {
public:
int countSubstrings(string s) {
int n = s.size(), res = ;
vector<vector<bool>> dp(n, vector<bool>(n));
for (int i = n - ; i >= ; --i) {
for (int j = i; j < n; ++j) {
dp[i][j] = (s[i] == s[j]) && (j - i <= || dp[i + ][j - ]);
if (dp[i][j]) ++res;
}
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/647

类似题目:

Longest Palindromic Subsequence

Longest Palindromic Substring

参考资料:

https://leetcode.com/problems/palindromic-substrings/

https://leetcode.com/problems/palindromic-substrings/discuss/105689/Java-solution-8-lines-extendPalindrome

https://leetcode.com/problems/palindromic-substrings/discuss/105688/Very-Simple-Java-Solution-with-Detail-Explanation

https://leetcode.com/problems/palindromic-substrings/discuss/105707/Java-DP-solution-based-on-longest-palindromic-substring

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Palindromic Substrings 回文子字符串的更多相关文章

  1. [LeetCode] 647. Palindromic Substrings 回文子字符串

    Given a string, your task is to count how many palindromic substrings in this string. The substrings ...

  2. Java实现 LeetCode 730 统计不同回文子字符串(动态规划)

    730. 统计不同回文子字符串 给定一个字符串 S,找出 S 中不同的非空回文子序列个数,并返回该数字与 10^9 + 7 的模. 通过从 S 中删除 0 个或多个字符来获得子字符序列. 如果一个字符 ...

  3. [Swift]LeetCode730. 统计不同回文子字符串 | Count Different Palindromic Subsequences

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

  4. LeetCode-5:Longest Palindromic Substring(最长回文子字符串)

    描述:给一个字符串s,查找它的最长的回文子串.s的长度不超过1000. Input: "babad" Output: "bab" Note: "aba ...

  5. LeetCode.5-最长回文子串(Longest Palindromic Substring)

    这是悦乐书的第342次更新,第366篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Medium级别的第3题(顺位题号是5).给定一个字符串s,找到s中最长的回文子字符串. 您可以假设s ...

  6. LeetCode——Palindromic Substrings

    Question Given a string, your task is to count how many palindromic substrings in this string. The s ...

  7. LeetCode 5. Longest Palindromic Substring & 回文字符串

    Longest Palindromic Substring 回文这种简单的问题,在C里面印象很深啊.希望能一次过. 写的时候才想到有两种情况: 454(奇数位) 4554(偶数位) 第1次提交 cla ...

  8. LeetCode Valid Palindrome 有效回文(字符串)

    class Solution { public: bool isPalindrome(string s) { if(s=="") return true; ) return tru ...

  9. Palindromic Tree 回文自动机-回文树 例题+讲解

    回文树,也叫回文自动机,是2014年被西伯利亚民族发明的,其功能如下: 1.求前缀字符串中的本质不同的回文串种类 2.求每个本质不同回文串的个数 3.以下标i为结尾的回文串个数/种类 4.每个本质不同 ...

随机推荐

  1. 接口登录CSDN发布博客---封装方法,使用unittest框架

    一个简单的跑接口流程:登录后发表带图片的博客.这里涉及到的知识点: 1.登录时通过cookies去保持登录状态,把cookies添加到一个session中,这样可以保持长时间登录状态: 2.我们通过爬 ...

  2. Java基础学习笔记二十三 Java核心语法之反射

    类加载器 类的加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过加载,链接,初始化三步来实现对这个类进行初始化. 加载就是指将class文件读入内存,并为之创建一个Class对象.任 ...

  3. JavaScript(第二十三天)【事件入门】

    JavaScript事件是由访问Web页面的用户引起的一系列操作,例如:用户点击.当用户执行某些操作的时候,再去执行一系列代码.   一.事件介绍 事件一般是用于浏览器和用户操作进行交互.最早是IE和 ...

  4. 按指定id顺序查询

    SELECT a.p,* FROM tb1 t,( as p union as p union as p union as p union as p ) a where t.id=a.id order ...

  5. 201421123042 《Java程序设计》第3周学习总结

    #Week03-面向对象入门 1. 本周学习总结 1.1写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 本周学习关键词:类,对象,封装,关键词:final,this,statis. 1 ...

  6. hp MSA50 5盘RAID5重建为4盘RAID5怎么恢复数据

    [用户单位] XX省电视台[数据恢复故障描述] 一台HP 服务器,挂接一台HP MSA50磁盘阵列,内接5块1TB硬盘,原先结构为RAID5. 使用一段时间后,其中一块硬盘掉线,因RAID5支持一块硬 ...

  7. [笔试题目]使用Stringbuffer无 参的构造函数创建 一个对象时,默认的初始容量是多少? 如果长度不够使用了,自动增长多少倍?

    [笔试题目] 使用Stringbuffer无 参的构造函数创建 一个对象时,默认的初始容量是多少? 如果长度不够使用了,自动增长多少倍? StringBuffer 底层是依赖了一个字符数组才能存储字符 ...

  8. thinkphp中定义自己的函数

    可以在前台和后台的公共文件夹中common.php中定义自己的函数,这样就可以在控制器中调用,而不需要调用对象了 /** * @name addvtorandp * @author 黄峰1664253 ...

  9. ASP.NET Web API编程——路由

    路由过程大致分为三个阶段: 1)请求URI匹配已存在路由模板 2)选择控制器 3)选择操作 1匹配已存在的路由模板 路由模板 在WebApiConfig.Register方法中定义路由,例如模板默认生 ...

  10. Column Addition~DP(脑子抽了,当时没有想到)

    Description A multi-digit column addition is a formula on adding two integers written like this: