We are given an elevation map, heights[i] representing the height of the terrain at that index. The width at each index is 1. After V units of water fall at index K, how much water is at each index?

Water first drops at index K and rests on top of the highest terrain or water at that index. Then, it flows according to the following rules:

  • If the droplet would eventually fall by moving left, then move left.
  • Otherwise, if the droplet would eventually fall by moving right, then move right.
  • Otherwise, rise at it's current position.

Here, "eventually fall" means that the droplet will eventually be at a lower level if it moves in that direction. Also, "level" means the height of the terrain plus any water in that column.

We can assume there's infinitely high terrain on the two sides out of bounds of the array. Also, there could not be partial water being spread out evenly on more than 1 grid block - each unit of water has to be in exactly one block.

Example 1:

Input: heights = [2,1,1,2,1,2,2], V = 4, K = 3
Output: [2,2,2,3,2,2,2]
Explanation:
# #
# #
## # ###
#########
0123456 <- index The first drop of water lands at index K = 3: # #
# w #
## # ###
#########
0123456 When moving left or right, the water can only move to the same level or a lower level.
(By level, we mean the total height of the terrain plus any water in that column.)
Since moving left will eventually make it fall, it moves left.
(A droplet "made to fall" means go to a lower height than it was at previously.) # #
# #
## w# ###
#########
0123456 Since moving left will not make it fall, it stays in place. The next droplet falls: # #
# w #
## w# ###
#########
0123456 Since the new droplet moving left will eventually make it fall, it moves left.
Notice that the droplet still preferred to move left,
even though it could move right (and moving right makes it fall quicker.) # #
# w #
## w# ###
#########
0123456 # #
# #
##ww# ###
#########
0123456 After those steps, the third droplet falls.
Since moving left would not eventually make it fall, it tries to move right.
Since moving right would eventually make it fall, it moves right. # #
# w #
##ww# ###
#########
0123456 # #
# #
##ww#w###
#########
0123456 Finally, the fourth droplet falls.
Since moving left would not eventually make it fall, it tries to move right.
Since moving right would not eventually make it fall, it stays in place: # #
# w #
##ww#w###
#########
0123456 The final answer is [2,2,2,3,2,2,2]: #
#######
#######
0123456

Example 2:

Input: heights = [1,2,3,4], V = 2, K = 2
Output: [2,3,3,4]
Explanation:
The last droplet settles at index 1, since moving further left would not cause it to eventually fall to a lower height.

Example 3:

Input: heights = [3,1,3], V = 5, K = 1
Output: [4,4,4]

Note:

  1. heights will have length in [1, 100] and contain integers in [0, 99].
  2. V will be in range [0, 2000].
  3. K will be in range [0, heights.length - 1].

这道题说有不同高度的地面,每次都位置K有水滴落下,水滴落下后移动的方向有如下的规则:

1. 如果水滴向左移动后最终停止的位置低于落下的位置,则向左移动。

2. 否则若水滴向右移动后最终停止的位置低于落下的位置,则向右移动。

3. 否则停在原来的位置。

水滴停止后,原来的位置高度就增加1,让我们返回最后地面的高度。我们首先来分析题目中的例子1:

#       #
# #
######
#########

我们可以观察出,如果左边到的位置低的话,就先去左边,即便右边能到同样低的位置,也还是左边优先。但是这个例子没能说明,如果右边的位置更低的话,是去右边呢,还是左边,看下面这个例子:

 #     #
### ###
##### #####
#############

红色表示水滴落下的位置,我们可以看到第五滴水没有去右边更低的地方,而是去了左边的位置,这说明,左边有至高优先权,只要左边的最终位置低于水滴落下的位置,一定会去左边。

还有就是,去一个方向最终要落到一个局部最低点,请看下面这个例子:

#
#### #
##### #
#######

我们可以看到,水滴去了右边第一个局部最低点,而再右边的全局最低点是无法到达的。如果都是一样的高度的话,落在离水滴落下起始位置最近的点,请看下下面这两个例子:

#
####
#####
#
#####
#####

第一个例子中水滴去了局部最低点,第二个例子中由于右边的高度都相同,水滴去了最靠近起始位置的点。

那么分析到这里,我想思路应该比较明晰了吧。首先我们尝试向左走,找到第一个局部最低点,停止条件是左边的高度大于当前高度,但是为了防止出现大家高度都一样而需要停止在靠近起始点位置的情况,我们来一个回滚操作,就是只要和右边的高度一样,就一直往右滚。同样,在尝试向右走,找第一个局部最低点,停止条件是右边的高度大于当前高度,但是为了防止出现大家高度都一样而需要停止在靠近起始点位置的情况,我们也来一个回滚操作,就是只要和左边的高度一样,就一直往左滚。那么此时我们来做比较,如果左边的局部最低点小于雨滴落下位置的高度,那么左边局部最低点高度自增1。否则如果右边的局部最低点高度小于雨滴落下位置的高度,则右边局部最低点高度自增1。如果左右高度都一样,则雨滴落下位置的高度自增1,参见代码如下:

class Solution {
public:
vector<int> pourWater(vector<int>& heights, int V, int K) {
for (int i = ; i < V; ++i) {
int l = K, r = K, n = heights.size();
while (l > && heights[l] >= heights[l - ]) --l;
while (l < K && heights[l] == heights[l + ]) ++l;
while (r < n - && heights[r] >= heights[r + ]) ++r;
while (r > K && heights[r] == heights[r - ]) --r;
(heights[l] < heights[K]) ? ++heights[l] : ++heights[r];
}
return heights;
}
};

类似题目:

Trapping Rain Water

参考资料:

https://leetcode.com/problems/pour-water/discuss/116670/My-8-Lines-C++-Solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Pour Water 倒水的更多相关文章

  1. LintCode——Pour Water

    Pour Water: We are given an elevation map, heights[i] representing the height of the terrain at that ...

  2. ZOJ 3913 Bob wants to pour water ZOJ Monthly, October 2015 - H

    Bob wants to pour water Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge There i ...

  3. LeetCode 755. Pour Water

    原题链接在这里:https://leetcode.com/problems/pour-water/description/ 题目: We are given an elevation map, hei ...

  4. Leetcode 365. Water and Jug Problem

    可以想象有一个无限大的水罐,如果我们有两个杯子x和y,那么原来的问题等价于是否可以通过往里面注入或倒出水从而剩下z. z =? m*x + n*y 如果等式成立,那么z%gcd(x,y) == 0. ...

  5. ZOJ 3913 Bob wants to pour water

    ZOJ Monthly, October 2015 K题 二分答案+验证 #include<iostream> #include<algorithm> #include< ...

  6. [LeetCode] Water and Jug Problem 水罐问题

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

  7. 【LeetCode】365. Water and Jug Problem 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学题 相似题目 参考资料 日期 题目地址:http ...

  8. [LeetCode] Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  9. Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)

    You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...

随机推荐

  1. 将 Shiro 作为应用的权限基础 二:基于SpringMVC实现的认证过程

    认证就是验证用户身份的过程.在认证过程中,用户需要提交实体信息(Principals)和凭据信息(Credentials)以检验用户是否合法.最常见的“实体/凭证”组合便是“用户名/密码”组合. 一. ...

  2. 多线程 Synchronized关键字和Lock

    Synchronized  分为实例锁和全局锁. 实例锁为 synchronized(this) 和 非static synchronized方法.   也加对象锁. 只要一个线程访问这类的一个syn ...

  3. 原生js封装添加class,删除class

    一.添加class function addClass(ele,cName) { var arr = ele.className.split(' ').concat(cName.split(" ...

  4. Python中的threadlocal

    在多线程中,对于共有的共享数据的操作,需要加锁. 但是,对于局部变量,则在每个线程之间相互独立. 假如线程T想要把函数F1中的局部变量V1传到函数F2中去,F2再想把这个变量传到F3中去,一层一层地传 ...

  5. Maven学习笔记一

    maven是apache下的一个开源项目,是纯java开发,并且只是用来管理java项目的. Maven好处 1.普通的传统项目,包含jar包,占用空间很大.而Maven项目不包含jar包,所以占用空 ...

  6. 第二周作业(pta存在的问题)

    ***第一题 错题截图 错因分析:中英文符号用混 改正截图: 思路分析:(1)由输入格式可知,该程序需要用到scanf函数 (2)构建框架 (3)根据要求打入代码 **第二题(正确) 代码截图: 思路 ...

  7. PTA常见错误

    1.最常犯的错误. 格式错误 在PTA程序检测中,输入输出要严格按照题目要求.输出的格式要完全按照题目要求来,该空格地方空格,该换行要换行.否则,就算你运行结果是对的,PTA还是提示你格式错误 比如下 ...

  8. Beta Scrum Day 7

    听说

  9. 敏捷冲刺每日报告——Day4

    1.情况简述 Alpha阶段第一次Scrum Meeting 敏捷开发起止时间 2017.10.28 00:00 -- 2017.10.29 00:00 讨论时间地点 2017.10.28晚9:30, ...

  10. Alpha集合

    项目名称:城市安全风险管控系统 小组成员: 张梨贤.林静.周静平.黄腾飞 Alpha冲刺随笔 Alpha冲刺Day1 Alpha冲刺Day2 Alpha冲刺Day3 Alpha冲刺Day4 Alpha ...