Input: petri.in A Petri net is a computational model used to illustrate concurrent activity. Each Petri net contains some number of places (represented by circles), transitions (represented by black rectangles),
and directed edges used to connect places to transitions, and transitions to places. Each place can hold zero or more tokens (represented by black dots). Here are two examples:

In the first Petri net above, there are two places (P1 and P2) and two transitions (T1 and T2). P1 initially has one token; P2 has none. P1 is an input place for transition T1, and P2 is an output place for T1.
In the second example there are three places and three transitions, with three tokens in P1. T2 has two input places, both of which are P2.

Operation of a Petri Net

Each transition in a Petri net is either enabled or disabled. A transition is enabled if there is at least one token in each of its input places. Any transition can fire whenever it is enabled. If multiple transitions
are enabled, any one of them may fire. When a transition fires, one token is removed from each of the input places, and one token is added to each of the output places; this is effectively done atomically, as one action. When there are no enabled transitions,
a Petri net is said to be dead.

In the top example only T1 is enabled. When it fires one token is removed from P1, and one token is added to P2. Then T2 is enabled. When it fires one token is removed from P2, and one token is added to P1. Clearly
this Petri net will repeat this cycle forever.

The bottom example is more interesting. T1 is enabled and fires, effectively moving a token to P2. At this point T1 is still the only enabled transition (T2 requires that P2 have two tokens before it is enabled).
T1 fires again, leaving one token in P1 and two tokens in P2. Now both T1 and T2 are enabled. Assume T2 fires, removing two tokens from P2 and adding one token to P3. Now T1 and T3 are enabled. Continuing until no more transitions are enabled, you should see
that only one token will be left in P2 after 9 transition firings. (Note that if T1 had fired instead of T2 when both were enabled, this result would have been the same after 9 firings.)

In this problem you will be presented with descriptions of one or more Petri nets. For each you are to simulate some specified number of transition firings, NF,
and then report the number of tokens remaining in the places. If the net becomes dead before NF transition firings, you are to report that fact as well.

Input

Each Petri net description will first contain an integer NP ( 0
NP < 100) followed by NP integers
specifying the number of tokens initially in each of the places numbered 1, 2,..., NP.
Next there will appear an integer NT ( 0
NT < 100) specifying the number of transitions. Then, for each transition (in increasing numerical order 1,
2,..., NT) there will appear a list of integers terminated by zero.

The negative numbers in the list will represent the input places, so the number - n indicates there is an input place at n.
The positive numbers in the list will indicate the output places, so the number pindicates an output place at p.
There will be at least one input place and at least one output place for each transition. Finally, after the description of all NT transitions, there will appear an integer
indicating the maximum number of firings you are to simulate, NF. The input will contain one or more Petri net descriptions followed by a zero.

Output

For each Petri net description in the input display three lines of output. On the first line indicate the number of the input case (numbered sequentially starting with 1) and whether or not NF transitions
were able to fire. If so, indicate the net is still live after NF firings. Otherwise indicate
the net is dead, and the number of firings which were completed. In either case, on the second line give the identities of the places which contain one or more tokens after the simulation, and the number of tokens each such place contains. This list should
be in ascending order. The third line of output for each set should be blank.

The input data will be selected to guarantee the uniqueness of the correct output displays.

Sample Input

2
1 0
2
-1 2 0
-2 1 0
100
3
3 0 0
3
-1 2 0
-2 -2 3 0
-3 1 0
100
3
1 0 0
3
-1 2 3 0
-2 1 0
-3 1 0
1
0

Sample Output

Case 1: still live after 100 transitions
Places with tokens: 1 (1)

Case 2: dead after 9 transitions
Places with tokens: 2 (1)

Case 3: still live after 1 transitions
Places with tokens: 2 (1) 3 (1)

模拟题,题目有点长,不过弄懂了不是很难,有点不想做模拟题,模拟题都问题太长,喜欢算法设计的题目。。。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>

using namespace std;

const int maxn = 105;

int p, t, np[maxn], lim;

struct petri{
	int ip, op, i[maxn], o[maxn], in[maxn], out[maxn];
} pet[maxn];
// ip、op是参与变迁的place的编号

int main(){
	int kase = 0;
	while (scanf("%d", &p) && p){
		memset(pet, 0, sizeof(pet));
		for (int i = 1; i <= p; ++i) {
			scanf("%d", &np[i]);
		}
		scanf("%d", &t);
		for (int i = 1; i <= t; ++i){
			int k;
			while (scanf("%d", &k), k){
				if (k < 0) {
					++pet[i].in[-k];
				}
				else {
					++pet[i].out[k];
				}
			}
			for (int j = 1; j <= p; ++j){
				if (pet[i].in[j]) {
					pet[i].i[++pet[i].ip] = j;
				}
				if (pet[i].out[j]) {
					pet[i].o[++pet[i].op] = j;
				}
			}
		}
		scanf("%d", &lim);
		int cnt = 0;
		for (int i = 1; i <= t; ++i){
			bool flag = true;
			petri &k = pet[i];
			for (int j = 1; j <= k.ip; ++j) {
				if (np[k.i[j]] < k.in[k.i[j]]){
					flag = false; break;
				}
			}
			if (!flag) continue;
			for (int j = 1; j <= k.ip; ++j) {
				np[k.i[j]] -= k.in[k.i[j]];
			}
			for (int j = 1; j <= k.op; ++j) {
				np[k.o[j]] += k.out[k.o[j]];
			}
			i = 0;
			if (++cnt >= lim) break;
		}
		if (cnt >= lim) {
			printf("Case %d: still live after %d transitions\n", ++kase, lim);
		}
		else {
			printf("Case %d: dead after %d transitions\n", ++kase, cnt);
		}
		printf("Places with tokens:");
		for (int i = 1; i <= p; ++i) {
			if (np[i]) {
				printf(" %d (%d)", i, np[i]);
			}
		}
		printf("\n\n");
	}
	return 0;
}

Uva - 804 - Petri Net Simulation的更多相关文章

  1. [刷题]算法竞赛入门经典(第2版) 6-7/UVa804 - Petri Net Simulation

    题意:模拟Petri网的执行.虽然没听说过Petri网,但是题目描述的很清晰. 代码:(Accepted,0.210s) //UVa804 - Petri Net Simulation //Accep ...

  2. 【习题 6-7 UVA - 804】Petri Net Simulation

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 模拟就好 [代码] /* 1.Shoud it use long long ? 2.Have you ever test sever ...

  3. UVA 10700 Camel trading 无括号的表达式 贪心

    题意:给出只包含数字和+*的表达式,你可以自己安排每一个运算的顺序,让你找出表达式可能得到的最大值和最小值. 很明显,先乘后加是最小值,先加后乘能得到最大值. 其实不是很明显... 证明下: 数字的范 ...

  4. Uva 120 - Stacks of Flapjacks(构造法)

    UVA - 120  Stacks of Flapjacks Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld &a ...

  5. UVA 10057 A mid-summer night's dream. 仲夏夜之梦 求中位数

    题意:求中位数,以及能成为中位数的数的个数,以及选择不同中位数中间的可能性. 也就是说当数组个数为奇数时,中位数就只有一个,中间那个以及中位数相等的数都能成为中位数,选择的中位数就只有一种可能:如果为 ...

  6. UVA804-Petri Net Simulation(模拟)

    Problem UVA804-Petri Net Simulation Accept:251  Submit:1975 Time Limit: 3000 mSec Problem Descriptio ...

  7. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  8. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  9. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

随机推荐

  1. SVN/GIT精简使用教程

        MAC 显示点文件 显示:defaults write com.apple.finder AppleShowAllFiles -bool true 隐藏:defaults write com. ...

  2. Hive中yyyymmdd和yyyy-mm-dd日期之间的切换

    以2017-12-05和20171205相互转换为例说明 方法1: from_unixtime+ unix_timestamp --20171205转成2017-12-05 ','yyyymmdd') ...

  3. Java不走弯路教程(3.用户验证与文件内容查询)

    3.用户验证与文件内容查询 在上一章中,我们完成了对指定文件内容的输出操作. 我们现在有如下格式的文件product.db id,product_name,product_detail 1,noteb ...

  4. ACM Smallest Difference

    给定一些不同的十进制数字(distinct decimal digits),您可以通过选择这些数字的非空子集(non-empty subset)并以某种顺序编写它们,从而形成一个整数. 剩下的数字可以 ...

  5. 用Matlab画直方图

    简介 本文介绍如何使用matlab定制自己的直方图. 关键 使用Matlab的 bar() 函数创建柱状图 bar() 画的bin的高度跟数据相关 bar() 数据每一列一个group,有几列数据就画 ...

  6. Android中典型的ROOT原理(5)

    ROOT的作用 Customization 用户的个人定制,如删除一些预安装,定制开机动画等. 特权操作 所有需要特权操作的基本都是要通过ROOT,这也是ROOT的初衷. ROOT的第一步:寻找漏洞并 ...

  7. 更快实现Android多级树形选择列表

    快速实现Android多级树形列表,这个库是在鸿洋多级树形列表demo中修改而来. 解决的问题: 1. 支持ID为int类型和String类型. 2. 支持多级复选框选中,使用只需一行代码. 3. 支 ...

  8. SpringMVC+Spring+Mybatis整合,使用druid连接池,声明式事务,maven配置

    一直对springmvc和mybatis挺怀念的,最近想自己再搭建下框架,然后写点什么. 暂时没有整合缓存,druid也没有做ip地址的过滤.Spring的AOP简单配置了下,也还没具体弄,不知道能不 ...

  9. cassandra 并发技术介绍

    摘要 本文主要介绍cassandra线程技术,cassandra的实现是基于java的,所以线程技术使用的也是jdk包提供的线程类.cassandra是分布式数据库,整个并发架构是基于阶段事件驱动架构 ...

  10. TOP-N类查询

    Top-N查询 --Practices_29:Write a query to display the top three earners in the EMPLOYEES table. Displa ...