在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况。本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料。



一. 相关函数

TensorBoard的输入是tensorflow保存summary data的日志文件。日志文件名的形式如:events.out.tfevents.1467809796.lei-All-Series 或 events.out.tfevents.1467809800.lei-All-Series。TensorBoard可读的summary data有scalar,images,audio,histogram和graph。那么怎么把这些summary
data保存在日志文件中呢?

数值如学习率,损失函数用scalar_summary函数。tf.scalar_summary(节点名称,获取的数据)

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.scalar_summary('accuracy', accuracy)

各层网络权重,偏置的分布,用histogram_summary函数

preactivate = tf.matmul(input_tensor, weights) + biases
tf.histogram_summary(layer_name + '/pre_activations', preactivate)

其他几种summary data也是同样的方式获取,只是对应的获取函数名称换一下。这些获取summary data函数节点和graph是独立的,调用的时候也需要运行session。当需要获取的数据较多的时候,我们一个一个去保存获取到的数据,以及一个一个去运行会显得比较麻烦。tensorflow提供了一个简单的方法,就是合并所有的summary data的获取函数,保存和运行只对一个对象进行操作。比如,写入默认路径中,比如/tmp/mnist_logs
(by default)

merged = tf.merge_all_summaries()
train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph)
test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')

SummaryWriter从tensorflow获取summary data,然后保存到指定路径的日志文件中。以上是在建立graph的过程中,接下来执行,每隔一定step,写入网络参数到默认路径中,形成最开始的文件:events.out.tfevents.1467809796.lei-All-Series 或 events.out.tfevents.1467809800.lei-All-Series。

for i in range(FLAGS.max_steps):
if i % 10 == 0:  # Record summaries and test-set accuracy
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else: # Record train set summarieis, and train
      summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
      train_writer.add_summary(summary, i)

二. 代码测试

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A simple MNIST classifier which displays summaries in TensorBoard.

 This is an unimpressive MNIST model, but it is a good example of using
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
naming summary tags so that they are grouped meaningfully in TensorBoard.

It demonstrates the functionality of every TensorBoard dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
                     'for unit testing.')
flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')
flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')

def train():
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True,
                                    fake_data=FLAGS.fake_data)

  sess = tf.InteractiveSession()

  # Create a multilayer model.

  # Input placehoolders
  with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.image_summary('input', image_shaped_input, 10)
    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
    keep_prob = tf.placeholder(tf.float32)
    tf.scalar_summary('dropout_keep_probability', keep_prob)

  # We can't initialize these variables to 0 - the network will get stuck.
  def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

  def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

  def variable_summaries(var, name):
    """Attach a lot of summaries to a Tensor."""
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.scalar_summary('mean/' + name, mean)
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
      tf.scalar_summary('sttdev/' + name, stddev)
      tf.scalar_summary('max/' + name, tf.reduce_max(var))
      tf.scalar_summary('min/' + name, tf.reduce_min(var))
      tf.histogram_summary(name, var)

  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    """Reusable code for making a simple neural net layer.

    It does a matrix multiply, bias add, and then uses relu to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read, and
    adds a number of summary ops.
    """
    # Adding a name scope ensures logical grouping of the layers in the graph.
    with tf.name_scope(layer_name):
      # This Variable will hold the state of the weights for the layer
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights, layer_name + '/weights')
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases, layer_name + '/biases')
      with tf.name_scope('Wx_plus_b'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.histogram_summary(layer_name + '/pre_activations', preactivate)
      activations = act(preactivate, 'activation')
      tf.histogram_summary(layer_name + '/activations', activations)
      return activations

  hidden1 = nn_layer(x, 784, 500, 'layer1')
  dropped = tf.nn.dropout(hidden1, keep_prob)
  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)

  with tf.name_scope('cross_entropy'):
    diff = y_ * tf.log(y)
    with tf.name_scope('total'):
      cross_entropy = -tf.reduce_mean(diff)
    tf.scalar_summary('cross entropy', cross_entropy)

  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(
        FLAGS.learning_rate).minimize(cross_entropy)

  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.scalar_summary('accuracy', accuracy)

  # Merge all the summaries and write them out to /tmp/mnist_logs (by default)
  merged = tf.merge_all_summaries()
  train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train', sess.graph)
  test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')
  tf.initialize_all_variables().run()

  # Train the model, and also write summaries.
  # Every 10th step, measure test-set accuracy, and write test summaries
  # All other steps, run train_step on training data, & add training summaries

  def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train or FLAGS.fake_data:
      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
      k = FLAGS.dropout
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0
    return {x: xs, y_: ys, keep_prob: k}

  for i in range(FLAGS.max_steps):
    if i % 10 == 0:  # Record summaries and test-set accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else: # Record train set summarieis, and train
      summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
      train_writer.add_summary(summary, i)

def main(_):
  if tf.gfile.Exists(FLAGS.summaries_dir):
    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
  tf.gfile.MakeDirs(FLAGS.summaries_dir)
  train()

if __name__ == '__main__':
  tf.app.run()



三. 运行结果

代码运行

生成文件

调用TensorBoard可视化运行结果

tensorboard --logdir=/tmp/mnist_logs/train/

打开链接 http://0.0.0.0:6006

EVENTS是训练参数统计显示,可以看到整个训练过程中,各个参数的变换情况

IMAGES输入和输出标签,省略

GRAPH网络结构显示

双击进去,可以显示更多的细节,包括右边的列表显示

HISTOGRAM训练过程参数分布情况显示

四. 参考资料

如果你想了解更多信息,可以参考一下资料:

https://www.tensorflow.org/versions/r0.9/how_tos/summaries_and_tensorboard/index.html

https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/tensorboard/README.md

https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py

https://www.tensorflow.org/versions/r0.9/how_tos/graph_viz/index.html

学习TensorFlow,TensorBoard可视化网络结构和参数的更多相关文章

  1. tensorflow Tensorboard可视化-【老鱼学tensorflow】

    tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. ...

  2. TensorFlow——TensorBoard可视化

    TensorFlow提供了一个可视化工具TensorBoard,它能够将训练过程中的各种绘制数据进行展示出来,包括标量,图片,音频,计算图,数据分布,直方图等,通过网页来观察模型的结构和训练过程中各个 ...

  3. 吴裕雄--天生自然 神经网络人工智能项目:基于深度学习TENSORFLOW框架的图像分类与目标跟踪报告(续四)

    2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的 ...

  4. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  5. Tensorflow实战 手写数字识别(Tensorboard可视化)

    一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打 ...

  6. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  7. Tensorflow 之 TensorBoard可视化Graph和Embeddings

    windows下使用tensorboard tensorflow 官网上的例子程序都是针对Linux下的:文件路径需要更改 tensorflow1.1和1.3的启动方式不一样 :参考:Running ...

  8. 利用tensorboard可视化checkpoint模型文件参数分布

    写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布 ...

  9. TensorFlow深度学习笔记 Tensorboard入门

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://ww ...

随机推荐

  1. ●UOJ 34 多项式乘法

    题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...

  2. 51 nod 1515 明辨是非(并查集合并)

    1515 明辨是非题目来源: 原创基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以 ...

  3. Codeforces278E Tourists

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给定一张无向图,有点权,要支持单点修改点权和询问从一个点到另一个点不重复经过节点的路径上点权最小值的最小值. n,m<=10^5 考虑求 ...

  4. 【Codeforces Round #430 (Div. 2) A C D三个题】

    ·不论难度,A,C,D自己都有收获! [A. Kirill And The Game] ·全是英文题,述大意:    给出两组区间端点:l,r,x,y和一个k.(都是正整数,保证区间不为空),询问是否 ...

  5. [bzoj4828][Ah/Hnoi2017]大佬

    来自FallDream的博客,未经允许,请勿转载,谢谢. 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢言语. 你 ...

  6. python3 字符串str 教程

    字符串可以用单引号或双引号来创建. Python 不支持单字符类型,单字符也在Python也是作为一个字符串使用. 例: var1 = 'Hello World!' var2 = "Pyth ...

  7. SpringMVC 处理映射

    一.Spring MVC控制器名称处理映射 以下示例展示如何利用Spring MVC 框架使用控制器名称处理程序映射. ControllerClassNameHandlerMapping类是基于约定的 ...

  8. requestAnimationFrame之缓动的应用

    之前需要使用的定时器的时,立马想到的是setInterval(),用着用着就成为习惯,并没有遇到什么不妥之处.习惯性的操作往往容易让一个人拒绝尝试一些其他的方法.现在的方法用得好好的,没事干啥找其他法 ...

  9. php序列化漏洞理解

    0x01什么是序列化 序列化就是将我们的 对象转变成一个字符串,保存对象的值方便之后的传递与使用. 0x02为什么要序列化 如果为一个脚本中想要调用之前一个脚本的变量,但是前一个脚本已经执行完毕,所有 ...

  10. UI相关

    前端 UI 框架 https://github.com/twbs/bootstrap https://github.com/google/material-design-lite https://gi ...