loj2977 巧克力 (斯坦纳树+随机化)
考虑颜色比较少的时候,第一问可以直接斯坦纳树
第二问考虑二分,每次把每格的权值给成1000+[a[i]>m],就是在个数最少的基础上尽量选小于等于m的
然而颜色太多不能直接做,但可以把每种颜色映射到5以内,这样的话,做一次的正确率就是作为答案的那5种颜色分别被映射到了1~5的概率,就是$\frac{5!}{5^5}=0.0384$,做233次正确率就有$99.989\%$了
#include<bits/stdc++.h>
#include<tr1/unordered_map>
#define CLR(a,x) memset(a,x,sizeof(a))
#define MP make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> pa;
const int maxn=,maxp=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int step[][]={{,},{,-},{,},{-,}};
int id[maxn][maxn],pct,pos[maxn][];
int N,M,S,K;
int f[maxn][maxp],c[maxn],a[maxn],val[maxn];
int hsh[maxn],C; queue<int> q;
bool flag[maxn];
inline void spfa(int s){
for(int i=;i<=pct;i++) if(c[i]!=-) flag[i]=,q.push(i); while(!q.empty()){
int p=q.front();q.pop();
flag[p]=;
int x=pos[p][],y=pos[p][];
for(int j=;j<;j++){
int nx=x+step[j][],ny=y+step[j][];
if(nx<||ny<||nx>N||ny>M||c[id[nx][ny]]==-) continue;
int ni=id[nx][ny];
if(f[ni][s]>f[p][s]+val[ni]){
f[ni][s]=f[p][s]+val[ni];
if(!flag[ni]) q.push(ni),flag[ni]=;
}
}
}
} inline int solve(){
CLR(f,);
for(int i=;i<=pct;i++) if(c[i]!=-) f[i][<<hsh[c[i]]]=val[i];
for(int s=;s<(<<K);s++){
for(int i=;i<=pct;i++){
if(c[i]==-) continue;
for(int ss=(s-)&s;ss;ss=(ss-)&s){
f[i][s]=min(f[i][s],f[i][ss]+f[i][s^ss]-val[i]);
}
}
spfa(s);
}
int ans=1e9;
for(int i=;i<=pct;i++) ans=min(ans,f[i][(<<K)-]);
return ans;
} int main(){
//freopen("","r",stdin);
srand();
for(int T=rd();T;T--){
pct=,C=;
N=rd(),M=rd(),K=rd();
for(int i=;i<=N;i++){
for(int j=;j<=M;j++) id[i][j]=++pct,pos[pct][]=i,pos[pct][]=j;
}
for(int i=;i<=N;i++) for(int j=;j<=M;j++) c[id[i][j]]=rd(),C=max(C,c[id[i][j]]);
for(int i=;i<=N;i++) for(int j=;j<=M;j++) a[id[i][j]]=rd();
int ans1=1e9,ans2=1e9;
for(int t=;t<=;t++){
for(int i=;i<=C;i++) hsh[i]=rand()%K;
int l=,r=1e6,a1=1e9,a2=1e9;
while(l<=r){
int m=(l+r)>>;
for(int i=;i<=pct;i++) val[i]=(c[i]==-?1e8:+(a[i]>m));
int re=solve();
if(re>=1e8) break;
a1=re/;
int x=a1-(re-a1*);
if(x>=(a1+)/) a2=m,r=m-;
else l=m+;
}
if(a1<ans1||(ans1==a1&&a2<=ans2)) ans1=a1,ans2=a2;
} printf("%d %d\n",ans1==1e9?-:ans1,ans1==1e9?-:ans2);
}
return ;
}
loj2977 巧克力 (斯坦纳树+随机化)的更多相关文章
- LOJ#2977. 「THUSCH 2017」巧克力(斯坦纳树+随机化)
题目 题目 做法 考虑部分数据(颜色较少)的: 二分中位数\(mid\),将\(v[i]=1000+(v[i]>mid)\) 具体二分操作:然后求出包含\(K\)种颜色的联通快最小的权值和,判断 ...
- 洛谷 P7450 - [THUSCH2017] 巧克力(斯坦纳树+随机化)
洛谷题面传送门 9.13 补之前 8.23 做的题,不愧是鸽子 tzc( 首先我们先来探讨一下如果 \(c_{i,j}\le k\) 怎么做,先考虑第一问.显然一个连通块符合条件当且仅当它能够包含所有 ...
- 【THUSC2017】【LOJ2977】巧克力 斯坦纳树
题目大意 有一个网格(或者你可以认为这是一个图),每个点都有颜色 \(c_i\) 和点权 \(a_i\). 求最小的连通块,满足这个连通块内点的颜色数量 \(\geq k\).在满足点数最少的前提下, ...
- [THUSC2017]巧克力[斯坦纳树、随机化]
题意 题目链接 分析 对于第一问,如果颜色数量比较少的话可以 \(\binom{cnt}{k}\) 枚举最终连通块中的 \(k\) 种颜色,然后利用斯坦纳树求解. 如果颜色比较多,考虑将所有的颜色重新 ...
- LOJ 2997 「THUSCH 2017」巧克力——思路+随机化+斯坦纳树
题目:https://loj.ac/problem/2977 想到斯坦纳树.但以为只能做 “包含一些点” 而不是 “包含一些颜色” .而且不太会处理中位数. 其实 “包含一些颜色” 用斯坦纳树做也和普 ...
- FJoi2017 1月20日模拟赛 直线斯坦纳树(暴力+最小生成树+骗分+人工构造+随机乱搞)
[题目描述] 给定二维平面上n个整点,求该图的一个直线斯坦纳树,使得树的边长度总和尽量小. 直线斯坦纳树:使所有给定的点连通的树,所有边必须平行于坐标轴,允许在给定点外增加额外的中间节点. 如下图所示 ...
- 【BZOJ2595】游览计划(状压DP,斯坦纳树)
题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...
- HDU 4085 斯坦纳树
题目大意: 给定无向图,让前k个点都能到达后k个点(保护地)中的一个,而且前k个点每个需要占据后k个中的一个,相互不冲突 找到实现这个条件达到的选择边的最小总权值 这里很容易看出,最后选到的边不保证整 ...
- hdu4085 Peach Blossom Spring 斯坦纳树,状态dp
(1)集合中元素表示(1<<i), i从0开始 (2)注意dp[i][ss] = min(dp[i][ss], dp[i][rr | s[i]] + dp[i][(ss ^ rr) | s ...
随机推荐
- 数据结构——Java实现链栈
一.分析 栈是限定仅在表的一端进行插入或删除操作的线性表,对于栈来说,操作端称为栈顶,另一端则称为栈底,栈的修改是按照后进先出的原则进行的,因此又称为后进先出的线性表. 链栈是指采用链式存储结构实现的 ...
- Java笔记(day9~day10)
继承: 好处:1.提高代码复用性: 2.让类之间产生关系,给多态提供了前提: 父类.子类 Java中支持单继承,不直接支持多继承,但对C++的多继承进行了改良 单继承:一个子类只能有一个直接复类 ...
- 第八课 表格 html5学习3
表格用来处理表格式数据的,不是用来布局的. 一.基本语法格式 <table> <tr> 行标签 <td></td> 单元格标签 </tr> ...
- arcgis api 3.x for js 入门开发系列十七在线天地图、百度地图、高德地图(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- weblogic doc
BEA WebLogic Server 9.2 Documentation https://docs.oracle.com/cd/E13222_01/wls/docs92/index.html 8.1 ...
- 基于jwt的用户登录认证
最近在app的开发过程中,做了一个基于token的用户登录认证,使用vue+node+mongoDB进行的开发,前来总结一下. token认证流程: 1:用户输入用户名和密码,进行登录操作,发送登录信 ...
- Windows苹果安卓手机远程桌面客户端推荐
适用于:Windows 10.Windows 8.1.Windows Server 2012 R2.Windows Server 2016 最近公司电脑从Windows7升级到了Windows10,然 ...
- Web前端教程4-JQuery教程
目录 1. JQuery基础 1.1. 基本语法 1.2. JQ和JS的差异 1.3. JQ入口函数的写法 1.4. JQ核心函数 1.5. JQ对象 2. JQ静态和实例方法 2.1. JQ静态方法 ...
- 第二课android中activity启动模式
一.标准启动模式可以用函数gettaskid得到任务的idtostring得到地址用textallcaps来设置是否全部大写应用启动自己是在任务栈里创建不同实例可以用返回来返回上一个任务栈在andro ...
- Doctype知识点总结
DOCTYPE是document type (文档类型) 的缩写.<!DOCTYPE >声明位于文档的最前面,处于标签之前,它不是html标签.主要作用是告诉浏览器的解析器使用哪种HTML ...