【BZOJ3996】[TJOI2015]线性代数(最小割)
【BZOJ3996】[TJOI2015]线性代数(最小割)
题面
题解
首先把式子拆开,发现我们的答案式就是这个:
\]
发现\(A\)是\(01\)矩阵,再结合数据范围一脸一个最大权闭合子图的形式。
然后这里有两种做法,
第一种是无脑版本,对于每个\(B_{i,j}\)都建立一个新点。
第二种就手动解一下方程,点数稍微少点,边数一样。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 300000
const int inf=1e9;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next,w;}e[MAX*10];
int h[MAX],cnt=2;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int S,T,level[MAX],cur[MAX];
bool bfs()
{
for(int i=S;i<=T;++i)level[i]=0;
queue<int> Q;Q.push(S);level[S]=1;
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
if(e[i].w&&!level[e[i].v])
level[e[i].v]=level[u]+1,Q.push(e[i].v);
}
return level[T];
}
int dfs(int u,int flow)
{
if(u==T||!flow)return flow;
int ret=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v;
if(level[v]==level[u]+1)
{
int d=dfs(v,min(flow,e[i].w));
ret+=d;flow-=d;
e[i].w-=d;e[i^1].w+=d;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())
{
for(int i=S;i<=T;++i)cur[i]=h[i];
ret+=dfs(S,inf);
}
return ret;
}
int n,C[505],B[505][505],ans,tot;
int main()
{
n=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)ans+=(B[i][j]=read());
for(int i=1;i<=n;++i)C[i]=read();
S=0;T=n+n*n+1;tot=n;
for(int i=1;i<=n;++i)Add(S,i,C[i]);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
++tot;
Add(i,tot,inf);Add(j,tot,inf);
Add(tot,T,B[i][j]);
}
printf("%d\n",ans-Dinic());
return 0;
}
【BZOJ3996】[TJOI2015]线性代数(最小割)的更多相关文章
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- [TJOI2015]线性代数(最小割)
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- BZOJ3996 [TJOI2015]线性代数 【最小割】
题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...
- BZOJ3996 [TJOI2015]线性代数
就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...
- BZOJ3996 TJOI2015线性代数
先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
随机推荐
- c#中缓存的使用
缓存的使用: 缓存是分布式系统中的重要组件,主要解决高并发,大数据场景下,热点数据访问的性能问题.提供高性能的数据快速访问,提高数据的读取速度.因为服务器和应用客户端之间存在着流量的瓶颈,所以读取大容 ...
- SpringBoot2 application.properties方式加载配置文件
application.properties jdbc.driverClassName=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://127.0.0.1:33 ...
- 【Redis】LRU算法和Redis的LRU实现
LRU原理 在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页.假设内存按照栈的方式来描述访问时间,在上面的 ...
- 对HTML5标签的认识(四)
这篇随笔讲讲HTML5中的表单和表单的一些元素 一.表单的作用是什么? 概念:表单在网页中主要是负责对数据信息的采取,表单一共分成三个部分: 1.表单的标签:这里面包含了处理表单的数据所用CGI程序以 ...
- Java建造(Builder)模式
一.什么是建造模式: 建造模式可以将一个产品的内部表象与产品的生成过程分割开来,从而使一个建造过程生成具有不同内部表象的产品.客户端不需要知道产品内部的结构和生产过程. 二.建造模式的结构: Buil ...
- 25 ,CSS 构造表格
1. 表格的基础构造 2. 边距和边线应用 3. 隐藏和删除应用 1. 简单表格 table { width:auto; border-collapse:collapse; margin-left: ...
- Odoo 强大的开源微信模块 oejia_wx
详见:http://oejia.net/blog/2018/10/24/oejia_wx_v054.html oejia_wx Odoo 的微信模块,提供了对微信公众号.企业号(企业微信)及小程序的接 ...
- PostGIS计算矢量切片(二)--按值渲染
方案背景 今年三月份写了一篇postgis计算矢量切片,参考了网上资料给出了一份很粗糙的相关方案(文章写的更粗糙).当时的方案中只能针对gis形状进行渲染,而不能用属性渲染.针对这个情况,本文 ...
- 基于geotools的(两个)SHP要素变化提取方法预研
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1. 背景 我们用遥感的手段进行卫星特征提取.多幅影像间的特征变化提取的 ...
- linux杀毒软件ClamAV的安装使用
1.安装依赖环境 yum install -y zlib openssl-devel yum groupinstall -y "Development Tools" apt ins ...