论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

本文提出的模型叫MobileNet,主要用于移动和嵌入式视觉应用。该模型具有小巧、低延迟的特点。MobileNet在广泛的应用场景中具有有效性,包括物体检测,细粒度分类,人脸属性和大规模地理定位。

MobileNet架构

深度可分解卷积(Depthwise Separable Convolution)

MobileNet模型基于深度可分解卷积(depthwise separable convolutions),它由分解后的卷积组成,分解后的卷积就是将标准卷积分解成一个深度卷积(depthwise convolution)和一个1x1的点卷积(pointwise convolution)。深度卷积将每个卷积核应用于输入的每一个通道;然后,深度卷积的输出作为点卷积的输入,点卷积用1x1卷积来组合这些输入。下面两个图如下:

  一个标准的卷积层以DF x DF x M大小的feature map F作为输入,然后输出一个DG x DG x N的feature G,其中DF输入feature map的宽度和高度,M是输入通道数目;DG是输出feature map的宽度和高度,N是输出通道的个数。卷积核K的参数量为DK x DK x M x N,其中,DK是卷积核的宽度和高度。标准的卷积的计算代价是(stride=1,padding=same):

现在将卷积核进行分解,深度卷积的计算量为:

  点卷积的计算量为(公式中省略了1 x 1):

因此,深度可分解卷积的计算总量为:

深度可分解卷积与标准卷积的计算量做比较,如下:

MobileNet使用了大量的3 × 3的深度可分解卷积核,极大地减少了计算量(1/8到1/9之间),同时准确率下降的很少,相比其他的方法确有优势。

Network Structure and Training

MobileNet结构如下图。其中,第一层采用标准卷积,其它层均采用本文提出的深度可分解卷积。每一层后面跟着一个batchnorm和ReLU,除了最后一层全连接层直接接softmax。下采样是采用带stride的卷积实现的。最后,MobileNet总共有28层(深度卷积和点卷积分开计算)。

下图对比了标准卷积与深度可分解卷积的结构:

MobileNet将95%的计算时间用于有75%的参数的1×1卷积,作者采用tensorflow和RMSprop进行训练,因为模型比较小,过拟合不太容易,所以数据增强和规则化用的不多。

每一层的计算量如下:

Width Multiplier: Thinner Models

尽管模型已经很小,但是为了让模型更小和更快,本文又提出第一个超参数α,称为宽度乘数(Width Multiplier)。宽度乘数α的作用是使得网络的每一层都“变瘦”。对于一个给定的层和一个宽度乘数α,输入通道M变成αM,输出通道N变成αN。

加上宽度乘数α之后,深度可分解卷积的计算量变为:

其中,α∈(0,1],典型值是1,0.75,0.5和0.25。α=1是MobileNet的baseline,α<1是reduced MobileNets。宽度乘数在计算量和参数量上大概可以减少α²。

Resolution Multiplier: Reduced Representation

第二个用于减少网络计算量的超参数是分辨率乘数(Resolution Multiplier)ρ。分辨率乘数用来改变输入数据层的分辨率。

在α和ρ共同作用下,我们的深度可分离卷积网络的计算量为:

其中,ρ∈(0,1],ρ 如果为{1,6/7,5/7,4/7},则对应输入分辨率为{224,192,160,128}。ρ 参数的优化空间同样是 ρ² 左右。

  下图可以看出两个超参数在减少网络参数的上的作用。

Experiments

Model Choices

  表4中,同样是MobileNet的架构,使用可分离卷积,精度值下降1%,而参数仅为1/7。

表5中,深且瘦的网络比浅且胖的网络准确率高3%。

Model Shrinking Hyperparameters

表6中,α 超参数减小的时候,模型准确率随着模型的变瘦而下降。

表7中,ρ 超参数减小的时候,模型准确率随着模型的分辨率下降而下降。

下图显示了准确率和计算量的权衡。总共16个模型,其中α∈{1,0.75,0.5,0.25},ρ∈{224,192,160,128}。

下图是MobileNet与GoogleNet、VGG16的比较。

还有其他很多比较数据,不再详述。

参考:

http://blog.csdn.net/wfei101/article/details/78310226

[论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)的更多相关文章

  1. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  2. [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...

  3. 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...

  4. 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...

  5. 【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析

    目录 0. Paper link 1. Overview 2. Depthwise Separable Convolution 2.1 architecture 2.2 computational c ...

  6. Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    目录 1. 故事 2. MobileNet 2.1 深度可分离卷积 2.2 网络结构 2.3 引入两个超参数 3. 实验 本文提出了一种轻量级结构MobileNets.其基础是深度可分离卷积操作. M ...

  7. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    1. 摘要 作者提出了一系列应用于移动和嵌入式视觉的称之为 MobileNets 的高效模型,这些模型采用深度可分离卷积来构建轻量级网络. 作者还引入了两个简单的全局超参数来有效地权衡时延和准确率,以 ...

  8. 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读

    2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...

  9. 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications

    论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...

随机推荐

  1. Java基础知识回顾之二 ----- 修饰符和String

    前言 在上一篇中,回顾了Java的基本数据类型 ,这篇就来回顾下Java中的一些修饰符以及String. 修饰符介绍 Java修饰符主要分为两类: 访问修饰符 非访问修饰符 其中访问修饰符主要包括 p ...

  2. from提交表单后 数据提交到后台 但不跳转页面 可用iframe

    可以页面事先加载被隐藏的iframe标签,或者等到需要的时候通过js生成,再提交,提交之前,form的target指向iframe(我是要实现新页面生成的时候程半透明状态,所以用了后者的方法) 代码如 ...

  3. CXF 开发 REST 服务

    今天我们将视角集中在 REST 上,它是继 SOAP 以后,另一种广泛使用的 Web 服务.与 SOAP 不同,REST 并没有 WSDL 的概念,也没有叫做"信封"的东西,因为 ...

  4. [poj3984]迷宫问题_bfs

    迷宫问题 题目大意:给你一个5*5的矩阵,求左上角到左下角的最短路径. 注释:0或1的矩阵,1表示不能走,0表示能走,保证有唯一最短路径. 想法:bfs爆搜练习题.通过其实点,定义方向数组,然后进行b ...

  5. 测试对bug如何分析和定位

    如何去区分一个功能测试工程师的水平高和低? 可以从很多个方面去检查,比如测试的思路, 比如测试用例的覆盖度?,比如测试出bug是否能够定位到根因? 上面说的各个方面都很合理,那我们平常如何如更深的定位 ...

  6. [Java] JDK 环境配置(图文)

    Windows10 上的安装配置 1.前往 JDK 官网下载对应 jdk 版本安装包: http://www.oracle.com/technetwork/java/javase/downloads/ ...

  7. python中Properties的一些小用法

    property最大的用处就是可以为一个属性制定getter,setter,delete和doc,他的函数原型为: def __init__(self, fget=None, fset=None, f ...

  8. 巨人大哥谈Web应用中的Session(session详解)

    巨人大哥谈Web应用中的Session(session详解) 虽然session机制在web应用程序中被采用已经很长时间了,但是仍然有很多人不清楚session机制的本质,以至不能正确的应用这一技术. ...

  9. Rails + React +antd + Redux环境搭建

    前提条件:node和ruby on rails必须已经安装好(相关安装流程不再此处介绍) 1.nvm.node 2.npm or yarn装一个就好 3.rvm.ruby on rails 4.for ...

  10. 201621123057 《Java程序设计》第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...