1.AOV与DAG

活动网络可以用来描述生产计划、施工过程、生产流程、程序流程等工程中各子工程的安排问题。

 
一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity)。完成了这些活动,整个工程就完成了。例如下图的代表的计算机专业课程,学习就是一个工程,每门课程的学习就是整个工程中的一个活动。
 
我们可以用上图的有向图来表示课程之间的先修关系。在这种有向图中,顶点表示课程学习活动,有向边表示课程之间的先修关系。例如顶点C1到C8有一条有向边,表示课程C1必须在课程C8之前先学习完。
 
实际上,在这种有向图中,用顶点表示活动,用有向边表示活动u必须先于活动v进行。这种有向图叫做活动网络(Activity on Vertices),记做AOV网络。
 
前驱与后继:在AOV网络中,如果存在有向边,则称活动u必须在活动v之前进行,并称u是v的直接前驱,v是u的直接后继。如果存在有向路径,则称u是v的前驱,v是u的后继。
 
有向环与有向无环图:从前驱与后继的传递性和反自反性可以看出,AOV网络中不能出现有向回路(或称为有向环)。不含有向回路的有向图称为有向无环图(DAG, Directed Acyclic Graph)。
 
在AOV网络中如果出现了有向回路,则意味着某项活动以自己作为先决条件,这是不对的。
2.拓扑排序
 
判断有向无环图的方法是对AOV网络构造它的拓扑有序序列。即将各个顶点排列成一个线性有序的序列,使得AOV网络中所有存在的前驱和后继关系都能得到满足。
 
这种构造AOV网络全部顶点的拓扑有序序列的运算称为拓扑排序(Topological Sorting)。
 
如果通过拓扑排序能将AOV网络的所有顶点都排入一个拓扑有序的序列中,则该AOV网络中必定不存在有向环;相反,如果得不到所有顶点的拓扑有序序列,则说明该AOV网络中存在有向环,此AOV网络所代表的工程是不可行的。
 
例如对上图所示的学生选课工程图进行拓扑排序,得到的拓扑有序序列为:
 
C1,C2,C3,C4,C5,C6,C8,C9,C7
或者
C1,C8,C9,C2,C5,C3,C4,C7,C6 
 
由此可见,AOV网络的拓扑有序序列可能不唯一。
 
3.Kahn算法拓扑排序算法:

(1)从有向图中选择一个没有前驱(即入度为0)的顶点并且输出它;
(2)从网中删去该顶点,并且删去从该顶点发出的全部有向边;
(3)重复上述两步,直到剩余的网中不再存在没有前趋的顶点为止。
 
输入:
6 8
1 2
1 4
2 6
3 2
3 6
5 1
5 2
5 6
6 8
1 3
1 2
2 5
3 4
4 2
4 6
5 4
5 6
输出:
Great! There is not cycle.
5 1 4 3 2 6
Network has a cycle!
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<sstream>
#include<functional>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 1e9 + ;
int T, n, m, cases;
vector<int>Map[maxn];
int Count[maxn];
void topo()
{
stack<int>s;//存储入度数为0的顶点
vector<int>v;//存取拓扑排序的答案
for(int i = ; i <= n; i++)//下标从1开始
if(Count[i] == )s.push(i);
while(!s.empty())
{
int now = s.top();
v.push_back(now);
s.pop();
for(int j = ; j < Map[now].size(); j++)
{
if((--Count[Map[now][j]]) == )
{
s.push(Map[now][j]);
}
}
}
if(v.size() != n)cout<<"Network has a cycle!"<<endl;
else
{
cout<<"Great! There is not cycle."<<endl;
for(int i = ; i < v.size(); i++)cout<<v[i]<<" ";
cout<<endl;
}
}
int main()
{
while(cin >> n >> m)
{
if(!n && !m)break;
int u, v;
for(int i = ; i <= n; i++)Map[i].clear();
memset(Count, , sizeof(Count));
for(int i = ; i < m; i++)
{
cin >> u >> v;
Map[u].push_back(v);
Count[v]++;//存入度
}
topo();
}
return ;
}

时间复杂度:由于每个点入栈出栈一次,每条边扫描一次,时间复杂度为O(m + n)

 
 
 

AOV网络和Kahn算法拓扑排序的更多相关文章

  1. Java排序算法——拓扑排序

    package graph; import java.util.LinkedList; import java.util.Queue; import thinkinjava.net.mindview. ...

  2. 2017 ACM-ICPC(乌鲁木齐赛区)网络赛 H.Skiing 拓扑排序+最长路

    H.Skiing In this winter holiday, Bob has a plan for skiing at the mountain resort. This ski resort h ...

  3. 基于DFS的拓扑排序

    传送门:Kahn算法拓扑排序 摘录一段维基百科上的伪码: L ← Empty list that will contain the sorted nodes S ← Set of all nodes ...

  4. 算法-图(3)用顶点表示活动的网络(AOV网络)Activity On Vertex NetWork

    对于给定的AOV网络,必须先判断是否存在有向环. 检测有向环是对AOV网络构造它的拓扑有序序列,即将各个顶点排列成一个线性有序的序列,使得AOV网络中所有直接前驱和直接后继关系都能得到满足. 这种构造 ...

  5. 【数据结构与算法Python版学习笔记】图——拓扑排序 Topological Sort

    概念 很多问题都可转化为图, 利用图算法解决 例如早餐吃薄煎饼的过程 制作松饼的难点在于知道先做哪一步.从图7-18可知,可以首先加热平底锅或者混合原材料.我们借助拓扑排序这种图算法来确定制作松饼的步 ...

  6. 拓扑排序 (Topological Sorting)

    拓扑排序(Topological Sorting) 一.拓扑排序 含义 构造AOV网络全部顶点的拓扑有序序列的运算称为拓扑排序(Topological Sorting). 在图论中,拓扑排序(Topo ...

  7. python拓扑排序

    发现自己并没有真的理解拓扑排序和多重继承,再次学习了下 拓扑排序要满足如下两个条件 每个顶点出现且只出现一次. 若A在序列中排在B的前面,则在图中不存在从B到A的路径. 拓扑排序算法 任何无回路的顶点 ...

  8. nyoj349 poj1094 Sorting It All Out(拓扑排序)

    nyoj349   http://acm.nyist.net/JudgeOnline/problem.php?pid=349poj1094   http://poj.org/problem?id=10 ...

  9. POJ1094 拓扑排序

    问题:POJ1094   本题考查拓扑排序算法   拓扑排序:   1)找到入度为0的点,加入已排序列表末尾: 2)删除该点,更新入度数组.   循环1)2)直到 1. 所有点都被删除,则找到一个拓扑 ...

随机推荐

  1. conda下载速度慢——添加源

    清华提供的anaconda镜像,使用以后真的很快!尤其在学校龟速的网络环境里提速非常明显. https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/ TU ...

  2. org.hibernate.PersistentObjectException: detached entity passed to persist

    简单地来看,将一个游离的对象要被持久化(save)时报错. 我们知道要持久化对象时候,通常Hibernate会根据ID生成策略自动生成ID值,但是这个对象ID已经有值,所有抛错.这个错误会出现在配置如 ...

  3. gulp工程化工具

    gulpfile.js var gulp = require('gulp'); var rename = require('gulp-rename') var pump = require('pump ...

  4. TPYBoard v102 DIY照相机(视频和制作流程)

    前段时间的帖子,利用TPYBoard v102做的DIY照相机,周末实物终于做出来了,加了两个按键模块和一个5110,做的有点糙啊----望大家勿怪,哈哈哈.拍出来图片还算清晰,串口摄像头模块用的30 ...

  5. PAT-L3-球队“食物链”-dfs-状压-set

    题目分析: 1. 一场双循环赛制的篮球赛,注意双循环,双循环! 2. 共有n只球队,两两之间有胜有负有平局: 3. 输入: 举例: 第一行:W:代表球队1打赢过这只队伍 L:代表球队2没打赢过这只队伍 ...

  6. table 表格的增删和修改

    如上图,图片的增删都没有问题:唯一的问题就是我改变下一行的内容时,把上面一行给覆盖了,费了好久,终于找到原因了,直接贴代码: 效果如下:

  7. 源码实现 --> atoi函数实现

    atoi函数实现 atoi()函数的功能是将一个字符串转换为一个整型数值. 例如“12345”,转换之后的数值为12345,“-0123”转换之后为-123. #include <stdio.h ...

  8. Python第二话 初识复杂数据类型(list、dictionary、tuple)

    上一篇我们简单认识了数据类型:数字number和字符串string,这篇我们就来隆重介绍一下重量级的数据类型:列表list.字典dictionary和元组tuple. 一.列表List: ①列表是什么 ...

  9. [poj3904]Sky Code_状态压缩_容斥原理

    Sky Code poj-3904 题目大意:给你n个数,问能选出多少满足题意的组数. 注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10 ...

  10. 分享两个提高效率的AndroidStudio小技巧

    这次分享两个 Android Studio 的小技巧,能够有效提高效率和减少犯错,尤其是在团队协作开发中. Getter 模板修改--自动处理 null 判断 格式化代码自动整理方法位置--广度 or ...