莫烦PyTorch学习笔记(五)——模型的存取
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt torch.manual_seed() # fake data
x = torch.unsqueeze(torch.linspace(-,,),dim=)
y = x.pow() + 0.2 * torch.rand(x.size())
x, y = Variable(x,requires_grad=False), Variable(y,requires_grad=False) def save():
net1 = torch.nn.Sequential(
torch.nn.Linear(, ),
torch.nn.ReLU(),
torch.nn.Linear(, )
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss() for t in range():
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step() plt.figure(,figsize=(,))
plt.subplot()
plt.title('Net1')
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(),'r-',lw=)
torch.save(net1, 'net.pkl') # 保存整个网络,包括整个计算图
torch.save(net1.state_dict(), 'net_params.pkl') # 只保存网络中的参数 (速度快, 占内存少) def restore_net():
net2 = torch.load('net.pkl')
prediction = net2(x)
plt.subplot()
plt.title('Net2')
plt.scatter(x.data.numpy(),y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(),'r-',lw=)
def restore_params():
net3 = torch.nn.Sequential(
torch.nn.Linear(, ),
torch.nn.ReLU(),
torch.nn.Linear(, )
)
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x) plt.subplot()
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=)
# 将保存的参数复制到 net3
plt.show() save()
restore_net()
restore_params()
结果和莫烦的不一样,但是找不到问题的所在,,。。。
莫烦PyTorch学习笔记(五)——模型的存取的更多相关文章
- 莫烦PyTorch学习笔记(五)——分类
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...
- 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...
- 莫烦pytorch学习笔记(七)——Optimizer优化器
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...
- 莫烦PyTorch学习笔记(六)——批处理
1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...
- 莫烦pytorch学习笔记(二)——variable
.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...
- 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )
CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...
- 莫烦PyTorch学习笔记(四)——回归
下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...
- 莫烦PyTorch学习笔记(三)——激励函数
1. sigmod函数 函数公式和图表如下图 在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...
- 莫烦pytorch学习笔记(一)——torch or numpy
Q1:什么是神经网络? Q2:torch vs numpy Numpy:NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(neste ...
随机推荐
- python爬取文件时,内容为空
解决方式: img_res = requests.get(src,headers=header)在header中加上referer防盗链加上防盗链header的例子: header = {" ...
- 【JUC】JDK1.8源码分析之ConcurrentHashMap
一.前言 最近几天忙着做点别的东西,今天终于有时间分析源码了,看源码感觉很爽,并且发现ConcurrentHashMap在JDK1.8版本与之前的版本在并发控制上存在很大的差别,很有必要进行认真的分析 ...
- jq页面换肤效果
<!DOCTYPE html> <html lang="en"> <head> <script src="http://code ...
- Markdown 语法大全
1 强调 星号与下划线都可以,单是斜体,双是粗体,符号可跨行,符号可加空格 **一个人来到田纳西** __毫无疑问__ *我做的馅饼 是全天下* _最好吃的_ 效果: 一个人来到田纳西 毫无疑问 我做 ...
- Selenium(二)---无界面模式+滑动底部
一.使用无界面模式 1.正常情况启动 selenium 是有界面的 2.有些情况下,需要不显示界面,这时只要设置一下参数就可以实现了 # 不想显示界面可以用 Chrome——配置一下参数就好 from ...
- vue3+node全栈项目部署到云服务器
一.前言 最近在B站学习了一下全栈开发,使用到的技术栈是Vue+Element+Express+MongoDB,为了让自己学的第一个全栈项目落地,于是想着把该项目部署到阿里云服务器.经过网上一番搜索和 ...
- Hive中SQL查询转换成MapReduce作业的过程
- Binary XML file line #23: Error inflating class android.widget.TextView
分析一波,报错23行TextView的问题,但是检查了xml没有发现23行又TextView相关代码,就不应该继续纠结xml了,代码是通过R文件拿到xml资源的,你就应该怀疑是R文件的问题,R文件编译 ...
- 解决vagrant上使用Homestead很慢(响应速度10s+)
说明: 使用vagrant和Homestead 在vBox上面跑laravel, 响应速度非常缓慢(大概在10+s), 尝试过增加虚拟机配置, 但是没有任何效果, 经验证也不是数据库的原因 . 通过网 ...
- 应用上云新模式,Aliware 全家桶亮相杭州云栖大会
全面上云带来的变化,不仅是上云企业数量上的攀升,也是企业对云的使用方式的转变,越来越多的企业用户不仅将云作为一种弹性资源,更是开始在云上部署架构和应用,借助 Serverless 等技术,开发人员只需 ...