题目链接

https://www.luogu.org/problem/P2022

题目描述

让我们来考虑1到N的正整数集合。让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9。

定义K在N个数中的位置为Q(N,K),例如Q(11,2)=4。现在给出整数K和M,要求找到最小的N,使得Q(N,K)=M。

输入格式

输入文件只有一行,是两个整数K和M。

输出格式

输出文件只有一行,是最小的N,如果不存在这样的N就输出0。


#include<bits/stdc++.h>
#include<math.h>
using namespace std;
int main()
{
long long k, m, i = 0, j, l = 0, a[30], b = 0, d, c, e, n = 0, aa = 0, bb;
cin >> k; //输入k
cin >> m; //输入m
c = k; //将k赋给c,不让k变化
while (c) //将k存到数组a[]里
{
a[i] = c % 10;
c = c / 10;
i++;
}
b = 0;
e = i;
d = e;
for (d; n <= i + 1; d--)
{
for (j = 1; j <= d; j++)
{
l = pow(10, j - 1) + l;
}
if (n == 0)
b = (a[i - 1 - n] - 1)*l + b;
else
b = a[i - 1 - n] * l + b;
n++;
l = 0;
}
b = b + i;//最小值为k时,k的排名
if (b == m) {
cout << k;
}
else if (m < b) { cout << 0; }
else
for (e = i;;e++)
{
bb = k * pow(10, e - i + 1) - pow(10, e) + aa;
if (m - b <= bb)
{
cout << setprecision(30) << m - b - 1 - aa + pow(10, e);
break;
}
aa = k * pow(10, e - i + 1) - pow(10, e) + aa;
}
return 0;
}

  

方法

先考虑当最大的整数为k时,k的位置。 代码如下:

for (d; n <= i + ; d--)
{
for (j = ; j <= d; j++)
{
l = pow(, j - ) + l;
}
if (n == )
b = (a[i - - n] - )*l + b;
else
b = a[i - - n] * l + b;
n++;
l = ;
}
b = b + i;//最小值为k时,k的排名

其中数组a[ ]里存着k

这段代码的讲解如下,为方便理解,令k=453,则有四种数字在k前边:

  • (1)首位以1、2、3开头的数字,个数为(1+10+100)×(4-1)
  • (2)首位为4的数,次位小于5的数,个数为(1+10)×(5-0)+1
  • (3)首位为4,次位为5,第3位小于3的数,个数为1×(3-0)
  • (4)首位或第二位与K相同,但总位数小于k。两个,分别为4、45

通过这种方法就求出来了最大值为k时的排名b。

  • 如果m=b,那显然最小值n=k;
  • 如果m<b,则不存在n,因为该组数的最小值肯定是>=k的。
  • 如果m>b,则一定存在n。

下面讨论m>b的情况。

分析易知,若m>b,则n的位数肯定大于k的位数。K=453有3位,分析知4位数里排在453前边的数字有:

  • 1000-1999,2000-2999,3000-3000,4000-4529

数字的数量 用代码表示为

*pow(,-+)-pow(,)
//pow(10,4-3+1)中的4代表4位数
3代表K的位数,pow(,)里的4代表4位数

  • (m-3位数字中k的排名)<4位数里排在453前边的数字个数时
  • 则所求数字n必然为四位数字,且n在1000-1999,2000-2999,3000-3000,4000-4529范围内
  • n=(m-3位数字中k的排名-1)+1000。 若
  • (m-3位数字中k的排名)>4位数里排在453前边的数字个数,则应继续判断(m-4位数字中k的排名)与5位数里排在453前边的数字个数大小,直到 (m-i位数字中453的排名)<与(i+1)位数里排在453前的数字量,此时即可得到所求的最小数字
  • n=(m-i位数字中453的排名-1)+pow(10, i);

以上就是这道题的题解

洛谷【P2022 有趣的数】 题解的更多相关文章

  1. 洛谷 P2022 有趣的数 解题报告

    P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...

  2. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  3. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  4. 洛谷P2657 [SCOI2009]windy数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2657 题目大意:找区间 \([A,B]\) 范围内 不含前导零 且 相邻两个数字之差至少为2 的正整数的个数. 题目分 ...

  5. P2022 有趣的数

    P2022 有趣的数 题目描述 让我们来考虑1到N的正整数集合.让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9. 定义K在N个数中的 ...

  6. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

  7. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  8. 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)

    洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...

  9. 【洛谷P2022】有趣的数

    有趣的数 题目链接 首先求出1~k中有多少个在k前面的数的个数,若>m,则无解 比如12345,从第一位开始, 1 0~1 共2个 1-0+1 12  10~12共3个    12-10+1 1 ...

  10. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

随机推荐

  1. mongodb搭建带auth的主从

    1:下载mongodb包(mongodb3.4的方法一样,就是mongodb内用户设置到时候不同用户对应不同库,验证时得先创建某个库到用户参考http://ibruce.info/2015/03/03 ...

  2. light oj 1102 - Problem Makes Problem组合数学(隔板法)

    1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...

  3. 大数相乘----C语言

    /* 大数相乘: 因为是大数,乘积肯定超出了能定义的范围,因此考虑用数组存储,定义三个数组,分别存储乘数,被乘数和积. 规则与平常手算一样,从个位开始分别与被乘数的每一位相乘,但是有一点不同的是:我们 ...

  4. Windows2008R2搭建共享存储服务器

    说明: 为了方便公司个部门软件.项目.文档等资料的归档和保存,实现公司内部资料共享及重要资料备份,防止因个人计算机系统故障或硬件故障导致数据丢失而造成数据无法恢复的损失,特建立共享服务器 1.在共享服 ...

  5. js模拟post提交表单

    function post(URL, PARAMS) {            var temp = document.createElement("form");         ...

  6. A——奇怪的玩意(POJ1862)

      题目: 我们的化学生物学家发明了一种新的叫stripies非常神奇的生命.该stripies是透明的无定形变形虫似的生物,生活在果冻状的营养培养基平板菌落.大部分的时间stripies在移动.当他 ...

  7. 【转】Redis内部数据结构详解 -- skiplist

    本文是<Redis内部数据结构详解>系列的第六篇.在本文中,我们围绕一个Redis的内部数据结构--skiplist展开讨论. Redis里面使用skiplist是为了实现sorted s ...

  8. Spring boot内置Tomcat的临时目录被删除导致文件上传不了-问题解析

    目录 1.问题 2.1. 为什么需要使用这个/tmp/tomcat*? 2.2.那个 /tmp/tomcat* 目录为什么不存在? 三.解决办法 修改 springboot 配置,不要在/tmp 下创 ...

  9. 了解JavaScript的语法基础,值和变量

    通过JavaScript语法基础学习了解到1.怎么使用js/*通常js的引入和css一样,分为内部,外部和行内引入,执行自上而下,有着先后顺序*/:2.js的语法/*2.1js是用字母,数字.特殊字符 ...

  10. float布局打破标准流,神助攻clear清浮动

    布局是什么?根据功能划分小块,再根据设计稿还原,书写静态页面,然后再在块里面填充内容,完善功能,js施加交互效果.div作为一个容器,独占一行,代码书写习惯从上至下属于标准流,而浮动float的css ...